期刊文献+

LS-SVM在基于小波变换的模态分析中端部效应的应用 被引量:4

Application of LS-SVM to the End Effect of Modal Analysis Based on Wavelet Transformation
在线阅读 下载PDF
导出
摘要 系统地阐述了运用改进的Morlet小波进行模态参数识别的方法。运用小波熵对小波参数进行了优化选择从而可以进行密频模态的识别,针对小波分析时产生的端部效应问题,提出了运用最小二乘支持向量机(LS-SVM)对小波骨架进行预测延拓的方法,经预测分析后可获取较准确的模态参数。通过仿真及实验信号的验证分析,表明基于LS-SVM方法可以有效地消除端部效应,且其准确效果优于基于RBF的神经网络和时变自回归的预测方法。 A method that the improved Morlet wavelet was used to identify the modal parameter was described systematically,and the wavelet parameter was optimized by the wavelet entropy.In the meantime,in order to resolving the end effect of the wavelet analysis a method that the LS-SVM was used to predict the wavelet skeleton was put forward.The results of simulation analysis and experimental analysis demonstrate that the time series forecasting method based on LS-SVM is applied to resolve the end effect of modal analysis based on Morlet wavelet is effective to identify the modal parameter accurately and restrain the end effect.And the accuracy is the highest among methods based on radial basis function(RBF) neural network and based on time-varying autoregressive(TVAR).
出处 《中国机械工程》 EI CAS CSCD 北大核心 2008年第13期1614-1620,共7页 China Mechanical Engineering
基金 国家自然科学基金资助项目(50675076 50545087) 国家重点基础研究发展计划资助项目(2005CB724101)
关键词 小波变换 模态分析 端部效应 最小二乘支持向量机(LS-SVM) wavelet transform modal analysis end effect least squares sport vector machine(LS-SVM)
  • 相关文献

参考文献13

  • 1Staszewski W J. Identification of Non--linear Systems Using Multi-- scale Ridges and Skeletons of the Wavelet Transform[J]. Journal of Sound and Vibration, 1998,214(4):639-658.
  • 2Lardies J, Gouttebroze S. Identification of Modal Parameters Using the Wavelet Transform[J]. International Journal of Mechanical Sciences, 2002, 44 (11) : 2263- 2283.
  • 3Pislaru C, Freeman J M, Ford D G. Modal Parameter Identification for CNC Machine Tools Using Wavelet Transform[J]. International Journai of Machine Tools and Manufacture, 2003, 43(10) : 987-993.
  • 4Joseph L, Ta M N. A Wavelet--based Approach for the Identification of Damping in Non--linear Oscillators [J]. International Journal of Mechanical Sciences, 2005, 47(8) . 1262-1281.
  • 5Ta M N, Joseph L. Identification of Weak Nonlinearities on Damping and Stiffness by the Continuous Wavelet Transform[J]. Journal of Sound and Vibration, 2006, 293(1) :16-37.
  • 6Huang C S, Su W C. Identification of Modal Parameters of a Time Invariant Linear System by Continuous Wavelet Transform[J]. Mechanical Systems and Signal Processing, 2007, 21(4). 1642-1664.
  • 7Le T P, Argoul P. Continuous Wavelet Transform for Modal Identification Using Free Decay Response [J]. Journal of Sound and Vibration, 2004(1) : 277 : 73-100.
  • 8Torrence C, Compo G P. A Practical Guide to Wavelet Analysis[J]. Bulletin of the American Meteorological Society, 1998, 79(1) .61-78.
  • 9Kijewski T, Kareem A. Wavelet Transforms for System Identification and Associated Processing Concerns[C]// 15th ASCE Engineering Mechanics Conference. New i York: Columbia University, 2002 : 1-8.
  • 10Kijewskj T, Kareem A. On the Presence of End Effects and Their Melioration in Wavelet--based Analysis[J]. i Journal of Sound and Vibration, 2002, 256(5). 980- 988.

二级参考文献13

  • 1Gurley K,Kareem A.Application of wavelet transforms in earthquake,wind and ocean engineering[J].Engineering Structures,1999,(21):149-167.
  • 2Grossmann A,Morlet J.Decomposition of Hardy functions into square integrable wavelets of constant shape[J].Journal of Mathematical Analysis,1984,15 (4):723-736.
  • 3Chui C K.Wavelet analysis and applications:An introduction to wavelet [M].Academic Press,San Diego,1992.
  • 4Staszewski W J.Identification of damping in MDOF systems using time-scale decomposition[J].Journal of Sound and Vibration,1997,203 (2):283-305.
  • 5Feldman M,Braun S.Identification of nonlinear system parameters via the instantaneous frequency:application of the Hilbert transform and WingerVille techniques[A].Proceedings of 13th IMAC[C].Nashville Tennessee,1995:637-642.
  • 6Staszewski W J.Identification of non-linear systems using multi-scale ridges and skeletons of the wavelet transform[J].Journal of Sound and Vibration,1998,214(4):639-658.
  • 7Torrence C,Compo G P.A practical guide to wavelet analysis[R].Bulletin of the American Meteorological Society,1998,79(1):61-78.
  • 8Kijewski T L,Kareem A.Wavelet transforms for system identification and associated processing concerns [A].15th ASCE Engineering Mechanics Conference [C].Columbia Univeristy,New York,2002.6:1-8.
  • 9Miha B,Janko S.Enhancements to the continuous wavelet transform for damping identifications on short signals [J].Mechanical Systems and Signal Processing,2004,(18):1 065-1 076.
  • 10Meyers S D,Kelly B G,Brien J J.An introduction to wavelet analysis in oceanography and meteorology:with application to the dispersion of Yanai waves[J].Monthly Weather Review,1993,121:2 858-2 866.

共引文献33

同被引文献79

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部