期刊文献+

浸矿菌Leptospirillum ferrooxidans氧化Fe^(2+)的电化学动力学 被引量:1

Electrochemical growth kinetics of Leptospirillum ferrooxidans through oxidation of Fe^(2+)
在线阅读 下载PDF
导出
摘要 研究Leptospirillum ferrooxidans溶液氧化还原电位φ与Fe2+氧化的内在联系,得到φ随溶液ln[c(Fe3+)/c(Fe2+)]的增加呈线性增长关系;研究Fe2+、细菌浓度、温度变化时Fe2+氧化反应速率的变化规律。在给定条件下,当溶液中Fe2+浓度较低时,随着Fe2+浓度的上升,Fe2+的氧化速率加快,而当Fe2+浓度在5 kg/m3以上时,Fe2+浓度的增加不但不会促使氧化速率加快,反而会抑制Fe2+的氧化;细菌浓度的增加,氧化速率随之上升,当细菌浓度在1.25×108cells/dm3以上时,氧化速率随细菌浓度的增加有较大幅度的增长;当温度在20~35℃范围时,温度的升高会加快细菌氧化Fe2+的速率,当温度再升高,则会抑制Fe2+的氧化。通过一系列电化学与生物化学分析,导出了Leptospirillum ferrooxidan生长动力学方程,并计算出活化能Ea、频率因子K0、表观饱和常数Km和单元附着系数Ki′等动力学参数的值;动力学模型能很好说明实验结果。 The relatively relationship between solution rexdox potential and the ferrous iron oxidation rate was established, and it shows that the φ value increases linearly with ln[c(Fe^3+ )/c(Fe^2+ )]. All the ferrous ion, the bacteria cells concentration and temperature have apparent effect on the ferrous oxidation rate. When the concentration of ferrous is less than 5 kg/m^3 the oxidation of ferrous ion increases, however the increase of ferrous ion concentration up to 5 kg/m^3 would give inhibition of oxidation rate, as well as at the temperature range of 20 ℃ to 35 ℃, the increased temperature can enhance the ferrous ion oxidation, but when the temperature is above 40 ℃, the growth of bacteria inhibis and the oxidation decreases relatively. The increase of cells concentration of bacteria enhances the oxidation apparently especially when the concentration of cells increases to above 1.25 × 108 cells/dm^3. Based on the ferrous ion oxidation and redox potential the growth kinetics models were established and the value of activation energy (Ea), frequency factor (K0), saturation constant (Km), and substrate inhibition coefficient (Ki) were determined. The kinetics model is well in coincidence to the experiments results.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2006年第9期1634-1640,共7页 The Chinese Journal of Nonferrous Metals
基金 国家自然科学基金资助项目(50204001) 国家重点基础研究发展计划资助项目(2004CB619205-2)
关键词 LEPTOSPIRILLUM ferrooxidans 细菌浸出 生物冶金 混合电位 动力学 电化学 Leptospirillum ferrooxidans bioleaching biohydrometallurgy redox mixed potential kinetics electrochemistry
  • 相关文献

参考文献6

二级参考文献108

  • 1金葆康,张祖训.超微盘电极线性扫描准稳态可逆波及其导数波理论[J].化学学报,1995,53(5):480-487. 被引量:1
  • 2庄乾坤,陈洪渊.超微盘、微半球电极上准稳态电流公式及其实验验证[J].化学学报,1996,54(11):1121-1127. 被引量:2
  • 3张祖训.超微电极电化学[M].北京:科学出版社,1999..
  • 4王淀佐.生物工程与矿物提取技术[A]..1998中国科学技术前沿(中国工程院版)[C].北京:高等教育出版社,1999.155.
  • 5Norris P R, Kelly D P. Dissolution of pyrite (FeS2) by pure and mixed cultures of some aeidophilie bacteria [J]. FEMS Microbiology Letters. 1978. 99:317.
  • 6Tsuchiya H M, Trivedi N C, Schuler M L. Microbial mutualism in ore leaching [J]. Biotechnology and Bioengineering, 1974,16. 991.
  • 7Le Roux N W, Wakerley D S, Hunt S D. Thermophilic Thiobacillus - type bacteria from Icelandic thermal areas [J]. Journal of General Microbiology, 1977, 100:197.
  • 8Brierly C L. Thermophilic micro- organism in extraction of metals from ores [J ]. Development in Industrial Microbiology, 1977, 18:273.
  • 9Norris P R, Marsh R M, Linstrom E B. Growth of mesophilic and thermophilic acidophlic bacteria on sulfur and tetrathionate [J]. Biotechnol Appl Biochem, 1986, 8:318.
  • 10Norris P R, Barr D B. Growth and iron oxidation by moderate thermophiles [J]. FEMS Mierobiol Lett 1985, 28:221.

共引文献68

同被引文献19

  • 1KELLY D P, WOOD A P. Reclassification of some species of Thiobacillus m the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen.nov[J]. International Journal of Systematic and Evolutionary Microbiology, 2000, 50:511-516.
  • 2NEMATI M, HARRISON S T L. A comparative study on thermophilic and mesophilic biooxidation of ferrous iron[J]. Minerals Engineering, 2000, 13(1): 19-24.
  • 3MERUANE G, VARGAS T. Bacterial oxidation of ferrous iron by Acidithiobacillus ferrooxidans in the pH range 2.5-7.0[J]. Hydrometallurgy, 2003, 71: 149-158.
  • 4LEDUC L G, FERRONI G D. The chcmolithotrophic bacterium Thiobacillus ferrooxidans[J]. FEMS Microbiology Reviews, 1994, 14: 103-120.
  • 5LEDUC L G, FERRONI G D, TREVORS J T. Resistance to heavy metals in different strains of Thiobacillusferrooxidans[J]. World Journal of Microbiology and Biotechnology, 1997, 13: 453-455.
  • 6DAS A, MODAK J M, NATARAJAN K A. Studies on multi-metal ion tolerance of Thiobacillus ferrooxidans[J]. Minerals Engineering, 1997, 10: 743-749.
  • 7NOVO M T, DA SILVA A C, MORETO R, CABRAL P C, COSTACURTA A, GARCIA O Jr, OTTOBONI L M. Thiobacillus ferrooxidans response to copper and other heavy metals: growth, protein synthesis and protein phosphorylation[J]. Antonie van Leeuwenhoek, 2000, 77: 187-195.
  • 8KIM S D, BAE J E, PARK H S, CHAD K. Bioleaching of cadmium and nickel from synthetic sediments by Acidithiobacillus ferrooxidans[J]. Environmental Geochemistry and Health, 2005, 27(3): 229-235.
  • 9KONISHI Y, TOSHIDO S, ASAI S. Bioleaching of pyrite by acidophilic thermophile Acidianus brierleyi[J]. Biotechnology and Bioengieering, 1995, 48: 592-600.
  • 10VITAYA V B, LOIZUMI J, TODA K A. Kinetic assessment of substantial oxidation by Sulfolobus acidocaldarius in pyrite dissolution[J]. Journal of Fermentation Bioengineering, 1994, 77(5): 528-534.

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部