期刊文献+

基于非线性判别分析的故障分类方法研究 被引量:14

Mechanical fault classification using nonlinear discriminant analysis
在线阅读 下载PDF
导出
摘要 针对复杂机械故障的模式分类问题,提出一种基于非线性判别的多故障分类方法。与线性判别分析相比,基于核的判别分析更适于处理线性不可分的分类问题。分析了基于核的判别分析方法与核函数主元分析方法之间的联系与差异,指出了两者不同的应用背景,核函数主元分析适于检测机械设备异常状态的出现,而基于核的判别分析则适于在积累历史故障征兆基础上对多种机械故障进行分类识别。将上述方法应用于风机工作状态的分类识别与齿轮故障模式分类,结果表明该方法对于多种复杂的故障模式分类具有出色表现。 To deal with pattern classification of complicated mechanical faults, an approach to multi-faults classification based on non-linear discriminant analysis is presented. Compared with linear discriminant analysis (LDA), kernel-based discriminant analysis (KDA) is more suitable for classifying the linear non-separable problem. By analyzing the connection and difference of KPCA (Kernel Principal Component Analysis) with KDA, the different application background is pointed out. KPCA is good at detecting machine abnormality while KDA performs well in multi-faults classification based on the database of historical faults symptoms. When the above method is applied to air compressor condition classification and gear fault classification, an excellent performance in complicated multi-faults classification is presented.
出处 《振动工程学报》 EI CSCD 北大核心 2005年第2期133-138,共6页 Journal of Vibration Engineering
基金 国家自然科学基金资助项目(50475095) 广东省自然科学资金资助项目(04020082) 振动 冲击与噪声国家重点实验室开放基金资助项目(VSN-2004-03)
关键词 故障诊断 分类方法 非线性判别 核函数 风机 Classification (of information) Compressors Failure (mechanical) Gears Nonlinear systems Operations research
  • 相关文献

参考文献8

  • 1Scholkopf B, Smola A, Mtiller K R. Nonlinear component analysis as a kernel eigenvalue problem [ J ]. Neural Computation,1998,10:1299-1319.
  • 2Mika S, Ratsch G, Weston J, et al. Fisher discriminant analysis with Kernels [ A ]. Neural Networks for Signal Processing IX[ C ]. 1999, 41-48.
  • 3Mika S, Ratsch G,Weston J,et al. Invariant feature extraction and classification in kernel spaces [ A ].Advances in Neural Information Processing Systems [ C ].2000(12):526-532.
  • 4Roth V, Steinhage V. Nonlinear discriminant analysis using kernel function [ A ]. Advances in Neural Information Proceeding Systems 12 [ C ]. MA.. MIT Press, 2000, 568-574.
  • 5Mika S, Smola A, Scholkopf B. An improved training algorithm for kernel fisher discriminants [ A ]. In Proceedings AISTATS [ C ]. Morgan Kaufmann,2001,13:98-104.
  • 6Baudat G, Anouar F. Generalized discriminant analysis using a kernel approach [ J ]. Neural Computation, 2000,12 (10) : 2385-2404.
  • 7李巍华,廖广兰,史铁林.核函数主元分析及其在齿轮故障诊断中的应用[J].机械工程学报,2003,39(8):65-70. 被引量:54
  • 8Leduc V, Kanny G, Moneret-Vautrin D A, et al.Diagnostic de l'allergie aux graines de Sesame: choix de la matiere premiere et optimisation du procede de fabrication [ J ]. Revue Francaise d'Allergologie et d' Immunologic Clinique,2001,41 (1) : 131-131.

二级参考文献4

  • 1徐章遂 房立清 王希武 等.故障诊断信息原理及应用[M].北京:国防工业出版社,2000..
  • 2Schōlkopf B, Smola A, Müller K R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 1998(10): 1 299-1 319.
  • 3Schōkopf B, Smola A, Müller K R. Kernel principal component analysis. In: Sch61kopf B, Burges C, Smola A, eds.Advances in kernel methods-support vector learning, Cambridge MA:MIT Press, 1999:327-352.
  • 4屈粱生 何正嘉.机械故障诊断学[M].上海:上海科学技术出版社,1986..

共引文献53

同被引文献129

引证文献14

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部