期刊文献+

基于改进遗传算法的超光谱图像特征选择方法 被引量:4

A feature selection method based on modified geneticalgorithm with hyperspectral images
在线阅读 下载PDF
导出
摘要 提出的特征选择新方法充分利用遗传算法并行搜索、全局寻优的优点,并结合超光谱图像特征选择的具体应用,选择表征类别可分性的判别标准作为评价函数计算个体适应度,通过交叉和变异操作实现个体进化.为加快算法收敛速度,提高遗传算法性能,在遗传算法中引入了两代竞争机制,获取最佳的分类特征组合.利用一幅200波段的AVIRIS超光谱图像进行的仿真实验结果表明,所提出的方法用于特征选择具有分类精度高,计算耗时少的优点. A new method based on Genetic Algorithm (GA) is proposed for feature selection of hyperspectral images. The proposed method fully uses the merit of genetic algorithm in parallel search and global optimization in terms of the application of feature selection of hyperspectral images. It exploits criterions that represent class separability to implement the individual evolution through crossover and mutation. To accelerate convergence and improve its performance, we introduce competition between two generations to simple genetic algorithm, and obtain the optimal combination of features for classification. The numerical experiments are performed on hyperspectral data with 200 bands collected by Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). The experimental results show that the proposed method has high classification accuracy and low computation cost for feature selection.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2005年第6期733-735,747,共4页 Journal of Harbin Institute of Technology
基金 国家自然科学基金资助项目(60272073).
关键词 超光谱图像 特征选择 遗传算法 hyperspectral images feature selection genetic algorithm
  • 相关文献

参考文献2

二级参考文献17

  • 1Jimenez L O, Landgrebe D A. Supervised classification in high- dimensional spece: Geometrical, statistical, and asymptotical properties of multivariate data. IEEE Trans. On System, Man, and Cybernetics-Part C: Applications and Reviews 1998 28(1):39-54.
  • 2Tu Te Ming, Chert Chin Hsing. A fast two stage elassification method for bigh dimensional remote sensing data. IEEE Trans.on Geoscienee and Remote Sensing, 1S98,36(1) :182-191.
  • 3Jia Xiuplng, Richards J A. Segmented principal componemts transformation for efficient hyperspeetral remote sensing image display and classification. IEEE Trans. On Geoscience and Remote Sensing, 1999,37(1) : 538-942.
  • 4Zhang Ye, DesaiMD, Zhang Junping et al. Adaptive subspace decomposition for hyperspectral data dimensionality reduction, In:International Conference on Image Processing (ICIP99'), Kobe, Japan,1999:326-329.
  • 5Benediktsson J A, Sveinsson J S, Arnason K. Classification and feature extraction of AVIRIS data. IEEE Trans. On Geoseience and Remote Sensing, 1995,33(5):1194-1205
  • 6Harsanyi J C, Chang Chein I. Hyperspectral image ctassification and dimensionality reduction: An orthogonal subspace projection approach. IEEE Trans. On Geoscience and Remote Sensing, 1994,32(4) : 779-785.
  • 7Chang Chein-I, Zhao Xiao Li, Althouse M L G et al Least squares subspaee projection approach to mixed pixel classification for hyperspectral images. IEEE Trans. On Geoscience and Remote Sensing, 1998,36(3):898-912.
  • 8JimenezL O, Motell A M, Creus S. Classification of hyperdimensional data based on feature and decision fusion approaches using projection pursuit, Majority Voting, and Neural Networks. IEEE Trans. On Geoscienee and Remote Sensing, 1999,37(3) : 1360-1366.
  • 9Benediktsson J A, Kanellopulos I. Classification of multisource and hyperspectral data based on decision fusion. IEEE Trans. On Geoscience and Remote Sensing, 1999,37(3):1367-1377.
  • 10Hoffman R N, Johnson D W. Application of EOF's to multispectral imagery : Data compression and noise detection for AVIRIS. IEEE Trans. On Geoscience and Remote Sewing, 1994.32(1) :25-34.

共引文献10

同被引文献49

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部