期刊文献+

钢板无损检测中基于模糊神经网络的参数识别 被引量:6

Application of Fuzzy Neural Network on Parameter Recognition of Steel Strip′s Nondestructive Testing
在线阅读 下载PDF
导出
摘要 钢板表面缺陷自动分类系统是近年来的研究热点之一。为了解决多无损检测源数据融合法检测缺陷尺寸的问题 ,给出了一种适用于多传感器数据融合的模糊神经网络模型 ,并对该模型的结构特点及实现进行了详细讨论。初步试验结果表明 ,此模型在一定程度上解决了从不同无损检测源所测值对钢板缺陷进行有效定量分析这一问题。它在无损检测中的应用表明该模型解决了传统模型中存在一些问题 。 Auto classification system of steel plate′s surface defects is one of the hottest issues in recent years. To solve the problem of defects size inspection through different NDT sources data fusion, a new fuzzy neural networks model adapted to multisensor data fusion is presented and the realization of this model and its characteristics are discussed in detail. The application of this model on the inspection of surface defect sizes shows that a quantitative method for determining the actual defect size is successfully developed to make full use of the measured defects sizes from different NDT sources. The preliminary result shows that the performance of this model can solve some problems of traditional models as well as this model can also be used in many other fields.
出处 《计算机测量与控制》 CSCD 2003年第1期14-16,19,共4页 Computer Measurement &Control
关键词 钢板 无损检测 模糊神经网络 参数识别 模式识别 fuzzy neural networks nondestructive testing parameter recognition steel plate
  • 相关文献

参考文献5

二级参考文献10

共引文献70

同被引文献60

引证文献6

二级引证文献117

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部