期刊文献+

测量中误差和扩展不确定度数学关系研究 被引量:2

Research on Mathematical Relationship between Root Mean Square Error and Extended Uncertainty
原文传递
导出
摘要 "测量误差"的概念在测绘领域已经被广泛使用和接受,而专门对测量误差的数据分析和处理——"测量平差"更是发展为测绘领域内一门单独的学科。随着测绘领域应用的越来越广泛和测绘跨学科的研究应用,"测量误差"的概念在跨学科的应用中与国际通用的不确定度概念常常引起误解。如何更好地把两者联系起来,论文通过从两者的定义和数学原理出发,进一步论证两者相互转化的数学关系,减少获取相关数据的计算成本。 The concept of "measurement error" has been widely used and accepted in surveying and mapping.Moreover,data analysis and processing of measurement errors-"surveying adjustment" has developed into an independent discipline.With the ever-increasing application of surveying and mapping and the interdisciplinary research,the concept of "measurement error" often leads to misunderstandings with the international concept of uncertainty in interdisciplinary applications.To link them better,and based on the definitions and mathematical principles,this paper further demonstrates the mathematical relationship between them and is supposed to reduce the computational cost of obtaining relevant data.
出处 《江西测绘》 2018年第1期3-6,共4页 JIANGXI CEHUI
关键词 中误差 不确定度 测绘 计量 Root Mean Square Error Uncertainty Surveying and Mapping Metrology
  • 相关文献

参考文献1

二级参考文献1

  • 1马恒儒,岳峰等.计量培训教材计量技术基础[M].北京:原子能出版社,2002:349-352.

共引文献5

同被引文献18

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部