摘要
为解决新能源电动汽车快速补能带来的热效应显著上升和充电电缆线径不可能相应增大的互相矛盾问题,基于电磁温度流体多物理场耦合的有限元仿真模型,提出对充电电缆增加主动降温的空间冷却通道,对比分析在不改变缆芯横截面积和环境温度的前提下冷却介质种类、冷却通道结构、冷却液流速对超快速充电场景下充电电缆缆芯温度及载流量的影响。仿真结果表明:冷却通道管径对充电电缆导体温度与载流量影响最大;液冷较强制风冷的冷却效果更为显著;理想的冷却介质流速为0.1~0.15 m/s。当缆芯截面积为70 mm^(2)、冷却液流速为0.1 m/s、冷却介质为乙二醇水溶液、冷却通道与缆芯横截面积之比为1.25时,充电电缆载流量达到600 A,温度为49.7℃。相关研究为超快速充电场景下大功率冷却型充电电缆的结构优化与设计提供了参考依据。
To address the contradiction between significant increase in thermal effects caused by rapid energy replenishment of new energy electric vehicles and the inability to correspondingly increase the diameter of charging cables,a finite element simulation model based on electromagnetic-thermal-current multi-physics coupling is proposed to add a space cooling channel for active cooling of charging cables.The effects of cooling medium type,cooling channel structure,and coolant flow rate on the temperature and current carrying capacity of charging cable cores in overcharging scenarios are compared and analyzed without changing the crosssectional area and environmental temperature of the cable cores.The simulation results show that the diameter of the cooling channel has the greatest impact on the temperature and current carrying capacity of the charging cable conductor,the cooling effect of liquid cooling is more significant than that of forced air cooling,and the ideal cooling medium flow rate is 0.1~0.15 m/s.When the cross-sectional area of the cable core is 70 mm^(2),the coolant flow rate is 0.1 m/s,the cooling medium is ethylene glycol aqueous solution,and the ratio of the cooling channel to the cross-sectional area of the cable core is 1.25,the charging cable current carrying capacity reaches 600 A,and the temperature is 49.7℃.The study provides reference for the structural optimization and design of high-power cooling charging cables in overcharging scenarios.
作者
贾璐萌
李宏杰
李旭涛
邓若宇
杜剑锋
王安红
JIA Lumeng;LI Hongjie;LI Xutao;DENG Ruoyu;DU Jianfeng;WANG Anhong(College of Electronic Information and Engineering,Taiyuan University of Science and Technology,Taiyuan,Shanxi 030024,China)
出处
《广东电力》
北大核心
2024年第6期111-119,共9页
Guangdong Electric Power
基金
国家自然科学基金项目(62072325)
山西省研究生教育教改项目(2022YJJG190)。
关键词
超快速充电
充电电缆
载流量
冷却通道
多物理场耦合
ultrafast charging
charging cable
current carrying capacity
cooling channel
multi-physics field coupling