期刊文献+

利用模拟热荷法计算地下电缆稳态温度场 被引量:63

Calculation of the Static Temperature Field of Underground Cables Using Heat Charge Simulation Method
在线阅读 下载PDF
导出
摘要 根据电场和温度场的相似性,提出了用于计算地下电缆群稳态温度场的模拟热荷法。利用热路的方法将电缆金属套损耗和铠装层损耗归算到电缆导体。利用调和平均法对电缆导体外的多层介质进行处理,最终将电缆等效为导体和外护层的2层结构。根据换热量相等的原则,将地表空气对流换热系数等效为一定厚度的土壤。在电缆线芯和空气中用模拟热荷代替原来的线芯损耗和空气对土壤温度场的影响。然后根据镜像法,按照地表空气等温、导体等温以及外护层和土壤边界温度梯度相同列出约束方程组。利用高斯法求解方程组,求得地下电缆群稳态温度场的分布。试验和有限元仿真验证了模拟热荷法在地下电缆群稳态温度场计算中的有效性。 Heat charge simulation method which was derived from comparison of electric and thermal field was presented to calculate the static temperature field of underground cables. Losses in cable sheath and armor were moved into cable conductor by thermal circuit method. The cable which was composed of multiple layers was equivalent to two layers, conductor and outer layer, by harmonic mean method. The coefficient of air convection on ground was substituted by equivalent depth of soil based on the equivalent quantity of heat exchanged between ground and air. Some heat charges were used to simulate the loss in cable core and the temperature of air. The constraint equations of isothermal and the same temperature gradient were established by mirror method. Gauss method was used to solve these equations and calculate the static temperature field of underground cables. The test and finite dement method (FEM) simulation have proved that heat charge simulation method is effective to calculate the static temperature field of underground cables.
出处 《中国电机工程学报》 EI CSCD 北大核心 2008年第16期129-134,共6页 Proceedings of the CSEE
关键词 地下电缆群 稳态温度场 热路 调和平均法 模拟热荷法镜像法 高斯法 underground cables static temperature field thermal circuit method harmonic mean method heat charge simulation method mirror method Gauss method
  • 相关文献

参考文献19

  • 1Anders G J. Rating of electric power cables-ampacity computations for transmission, distribution, and industrial applications[M]. New York: IEEE Press, 1997.
  • 2赵建华,袁宏永,范维澄,赵亚新.基于表面温度场的电缆线芯温度在线诊断研究[J].中国电机工程学报,1999,19(11):52-54. 被引量:85
  • 3Downes J, Leung H Y. Distributed temperature sensing worldwide power circuit monitoring application[C]. 2004 International Conference on Power System Technology-POWERCON, Singapore, 2004: 1804-1809.
  • 4Neher J H. The temperature rise of buried cables and pipes[C]. AIEE Winter General Meeting, New York, 1949.
  • 5Neher J H, Mcgrath M H. The calculation of the temperature rise and load capability of cable systems[C]. AIEE Summer General Meeting, Canada, Montreal, 1957.
  • 6IEC 60287-1 Calculation of the current rating-part 1 : current rating equations(100% load factor) and calculation of losses[S]. 2001.
  • 7IEC 60287-2 Calculation of the current rating-part 2: thermal resistance[S]. 2001.
  • 8IEC 60287-3 Calculation of the current rating-part 3: sections on operating conditions[S]. 1999.
  • 9Vaucheret P, Hartlein R A, Black W Z. Ampacity derating factors for cables in short segment of conduit[J]. IEEE Transactions on Power Delivery, 2005, 20(2): 1-6.
  • 10Miyagi D, Wakatsuki T, Takahashi N. 3-D finite element analysis of current distribution in hts power cable taking account of E-J power law characteristic[J]. IEEE Transactions on Magnetics, 2004, 40(2): 908-1001.

二级参考文献60

共引文献245

同被引文献547

引证文献63

二级引证文献617

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部