期刊文献+

基于工况数据的烟尘排放异常检测

ANOMALY DETECTION OF SMOKE EMISSIONS BASED ON WORKING CONDITION DATA
原文传递
导出
摘要 识别由于主观篡改或设备工况异常导致的污染物排放数据异常现象,对于重点排污单位环境污染监控、整治和管理有着重要意义。以河北省某钢铁企业为例,基于每小时工况数据和烟尘浓度建立预测模型,采用改进的损失函数MSECorrLoss进行TabNet模型训练,并与XGBoost、LightGBM和BiLSTM模型进行对比,提出了一种基于阈值划分的K-error算法进行烟尘排放异常数据的识别,结果表明:1)相较RMSELoss损失函数,采用改进的MSECorrLoss训练后,TabNet模型MAPE由15.33%下降为15.10%,且模型收敛更快。2)LightGBM和XGBoost训练速度快,但LightGBM预测精度低(RMSE=0.3201, MAPE=29.45%),XGBoost和BiLSTM模型鲁棒性与稳定性(RMSE:0.3403~0.3425, MAPE:13.58%~18.38%)不及TabNet(RMSE:0.2886~0.2934, MAPE:15.10%~15.33%)。虽然TabNet训练时间较长,但无需人工进行特征选取,应用限制低,在烟尘预测中具有良好的应用效果。3)基于工况数据构建的TabNet模型在污染物排放预测上具有较高的预测精度与稳定性,结合K-error检测算法可以克服阈值法带来的主观性。该方法可以快速检测污染物排放异常数据,为环境管理决策提供参考。 Identifying the abnormal phenomenon of pollutant emission data caused by subjective tampering or abnormal equipment working conditions is of great significance for environmental pollution monitoring,remediation and management of key pollutant discharging units.Taking a steel enterprise in Hebei Province as an example,we developed a prediction model,TabNet,based on hourly working condition data and smoke concentration.We trained the model by using an improved loss function,MSECorrLoss.TabNet was compared with XGBoost,LightGBM and BiLSTM.We developed a K-error anomaly detection algorithm to identify the anomaly data of smoke emission.The results show that:1)the MAPE of TabNet model decreases from 15.33%to 15.10%and TabNet model converges faster after being trained by improved MSECorrLoss comparing with being trained by RMSELoss loss function.2)LightGBM and XGBoost have high training speed,but low prediction accuracy(RMSE=0.3201,MAPE=29.45%).The robustness and stability of XGBoost and BiLSTM models(RMSE:0.3403~0.3425,MAPE:13.58%~18.38%)is lower than TabNet(RMSE:0.2886~0.2934,MAPE:15.10%~15.33%).Although TabNet takes longer training time,it does not require manual feature selection,has low application restrictions,and has a better application performance in smoke prediction.3)The TabNet model constructed based on working condition data has high prediction accuracy and stability in pollutant discharge prediction.With K-error detection,the TabNet model overcomes the subjectivity brought by a threshold method.This method can detect the abnormal data of pollutant discharge quickly and support environmental management decision making.
作者 何炜琪 陈蓉 陆智翔 马旭 吴志杰 HE Weiqi;CHEN Rong;LU Zhixiang;MA Xu;WU Zhijie(Research Institute for Environmental Innovation(Suzhou),Tsinghua,Suzhou 215163,China)
出处 《环境工程》 CAS CSCD 2024年第1期79-84,共6页 Environmental Engineering
基金 国家重点研发计划项目“污染场地大数据管理分析研究及平台构建”(2020YFC1807402)。
关键词 TabNet MSECorrLoss 烟尘 浓度预测 异常检测 TabNet MSECorrLoss smoke concentration prediction anomaly detection
  • 相关文献

参考文献9

二级参考文献68

  • 1薄翠梅,张湜,王执铨,李俊.基于滑动时间窗的支持向量机软测量建模研究[J].自动化仪表,2006,27(1):45-48. 被引量:14
  • 2肖劲松,严天鹏.风力机叶片的红外热成像无损检测的数值研究[J].北京工业大学学报,2006,32(1):48-52. 被引量:37
  • 3肖芬,高协平.参数可变系统时间序列短期预测方法(英文)[J].软件学报,2006,17(5):1042-1050. 被引量:7
  • 4荣海娜,张葛祥,金炜东.系统辨识中支持向量机核函数及其参数的研究[J].系统仿真学报,2006,18(11):3204-3208. 被引量:79
  • 5Zhang Y N Meratnia, Havinga P. Outlier Detection Techniques for Wireless Sensor Networks : A Survey[ J ]. Ieee Communications Surveys and Tutorials ,2010,12 ( 2 ) : 159 - 170.
  • 6Lee D W, Kim J H. High Reliable In-Network Data Verification in Wireless Sensor Networks [ J ]. Wireless Personal Communications, 2010,54(3) :501 -519.
  • 7Wu W,et al. Localized outlying and boundary data detection in sensor networks- ] 1. Ieee Transactions on Knowledge and Data Engineering, 2007,19(8) :1145 -1157.
  • 8Sheng B, et al. Outlier Detection in Sensor Networks [ C ]//Mobihoc' 07 :Proceedings of the Eighth Acm International Symposium on Mobile Ad Hoc Networking and Computing,2007:219 - 228.
  • 9Zhang K, et al. Unsupervised Outlier detection in sensor networks using aggregation tree [C]//Advanced Data Mining and Applications, Proceedings ,2007,4632 : 158 - 169.
  • 10Rajasegarar S, et al. Distributed anomaly detection in wireless sensor networks[ C]//2006 10th IEEE Singapore International Conference on Communication Systems ,2006:728 - 732.

共引文献138

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部