摘要
识别由于主观篡改或设备工况异常导致的污染物排放数据异常现象,对于重点排污单位环境污染监控、整治和管理有着重要意义。以河北省某钢铁企业为例,基于每小时工况数据和烟尘浓度建立预测模型,采用改进的损失函数MSECorrLoss进行TabNet模型训练,并与XGBoost、LightGBM和BiLSTM模型进行对比,提出了一种基于阈值划分的K-error算法进行烟尘排放异常数据的识别,结果表明:1)相较RMSELoss损失函数,采用改进的MSECorrLoss训练后,TabNet模型MAPE由15.33%下降为15.10%,且模型收敛更快。2)LightGBM和XGBoost训练速度快,但LightGBM预测精度低(RMSE=0.3201, MAPE=29.45%),XGBoost和BiLSTM模型鲁棒性与稳定性(RMSE:0.3403~0.3425, MAPE:13.58%~18.38%)不及TabNet(RMSE:0.2886~0.2934, MAPE:15.10%~15.33%)。虽然TabNet训练时间较长,但无需人工进行特征选取,应用限制低,在烟尘预测中具有良好的应用效果。3)基于工况数据构建的TabNet模型在污染物排放预测上具有较高的预测精度与稳定性,结合K-error检测算法可以克服阈值法带来的主观性。该方法可以快速检测污染物排放异常数据,为环境管理决策提供参考。
Identifying the abnormal phenomenon of pollutant emission data caused by subjective tampering or abnormal equipment working conditions is of great significance for environmental pollution monitoring,remediation and management of key pollutant discharging units.Taking a steel enterprise in Hebei Province as an example,we developed a prediction model,TabNet,based on hourly working condition data and smoke concentration.We trained the model by using an improved loss function,MSECorrLoss.TabNet was compared with XGBoost,LightGBM and BiLSTM.We developed a K-error anomaly detection algorithm to identify the anomaly data of smoke emission.The results show that:1)the MAPE of TabNet model decreases from 15.33%to 15.10%and TabNet model converges faster after being trained by improved MSECorrLoss comparing with being trained by RMSELoss loss function.2)LightGBM and XGBoost have high training speed,but low prediction accuracy(RMSE=0.3201,MAPE=29.45%).The robustness and stability of XGBoost and BiLSTM models(RMSE:0.3403~0.3425,MAPE:13.58%~18.38%)is lower than TabNet(RMSE:0.2886~0.2934,MAPE:15.10%~15.33%).Although TabNet takes longer training time,it does not require manual feature selection,has low application restrictions,and has a better application performance in smoke prediction.3)The TabNet model constructed based on working condition data has high prediction accuracy and stability in pollutant discharge prediction.With K-error detection,the TabNet model overcomes the subjectivity brought by a threshold method.This method can detect the abnormal data of pollutant discharge quickly and support environmental management decision making.
作者
何炜琪
陈蓉
陆智翔
马旭
吴志杰
HE Weiqi;CHEN Rong;LU Zhixiang;MA Xu;WU Zhijie(Research Institute for Environmental Innovation(Suzhou),Tsinghua,Suzhou 215163,China)
出处
《环境工程》
CAS
CSCD
2024年第1期79-84,共6页
Environmental Engineering
基金
国家重点研发计划项目“污染场地大数据管理分析研究及平台构建”(2020YFC1807402)。