期刊文献+

改进小波神经网络用于火电厂污染物排放量的预测 被引量:5

Improved Wavelet Neural Network Used for Prediction of Pollutant Emissions in Thermal Power Plants
在线阅读 下载PDF
导出
摘要 小波神经网络是神经网络学习的一种,其网络结构与典型的BP神经网络类似,隐含层所用函数为小波基函数,改进的小波神经网络相比于之前在数据预测方面有了明显的提高。火电厂的污染问题是关系到整个国计民生的大问题,如果能将小波神经网络的预测能力应用于实际生产过程,将十分有助于促进国家经济发展,提高人民生活质量。 Wavelet neural network is a kind of neural network learning,and network structure is similar to the typical BP neural network.The function of the hidden layer is the wavelet basis function.The improved wavelet neural network has the obvious improvement in data prediction.The pollution problem of the power plant is related to the whole national economy and people's livelihood.If we can apply wavelet neural network prediction ability in actual production process,it will help to promote national economic development,and improve people's quality of life.
出处 《计算机科学》 CSCD 北大核心 2016年第S1期508-511,共4页 Computer Science
基金 山西省高校重点学科建设项目(20130166) 山西省科技攻关项目(20140321022-02) 朔州市科技攻关项目(2013-33-38 2013-33-40)资助
关键词 小波神经网络 附加动量项 Morlet函数 污染物 预测 Wavelet neural network Additional momentum item Morlet functions Pollutants Predict
  • 相关文献

参考文献8

二级参考文献47

  • 1张邦礼,李银国,曹长修.小波神经网络的构造及其算法的鲁棒性分析[J].重庆大学学报(自然科学版),1995,18(6):88-95. 被引量:21
  • 2雷霆,余镇危.一种网络流量预测的小波神经网络模型[J].计算机应用,2006,26(3):526-528. 被引量:33
  • 3纪冬梅,胡毓仁.基于小波神经网络和疲劳曲线的结构疲劳寿命及可靠度预测[J].船舶力学,2006,10(5):84-89. 被引量:5
  • 4Pei Y C, Pedersen T, Bak J B, et al. ARIMA-based time series model of stochastic wind power generation[J]. IEEE Transactions on Power Systems, 2010,25(2): 667-676.
  • 5Rajesh G K, Krithika S. Day-ahead wind speed forecasting using f-ARIMA models[J]. Renewable Energy, 2009, 34(5): 1388-1393.
  • 6Peiyuan C, Pedersen T, Bak J B, et al. ARIMA-based time series model of stochastic wind power generation[J]. IEEE Transactions on Power Systems, 2010,25(2): 667-676.
  • 7Cadenas E, Rivera W. Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA-ANN model[J]. Renewable Energy, 2010, 35(7): 2732-2738.
  • 8Monfared M, Rastegar H, Kojabadi H M. A new strategy for wind speed forecasting using artificial intelligent methods[J]. Renewable Energy, 2009, 34(5): 845-848.
  • 9Huang N E, Shen Z, Long S R. The empirical mode decomposition and the Hilbert spectrum for nonlinear and-non-stationary time series analysis [J]. Proceedings of the Royal Society Soc Land, 1998, 454(1971): 903-995.
  • 10Wu Z, Huang N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.

共引文献161

同被引文献43

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部