期刊文献+

基于TPA-Transformer的机票价格预测 被引量:2

Airfare Price Prediction Based on TPA-Transformer
在线阅读 下载PDF
导出
摘要 【目的】航空业被认为是使用最复杂定价策略的行业之一,机票价格动态波动显著。乘客根据经验购票(如尽早购票)往往得不到最优价格,而基于时序模型的传统价格预测方法也不能很好地捕捉复杂内外部因素与机票价格之间的依赖关系。【方法】本文提出基于机器学习的机票价格预测模型TPA-Transformer(Ticket Price Aware Transformer,机票价格感知Transformer)和一种基于时间序列的数据处理方法,通过增加注意力模块引入其他航班价格参考信息,并在Encoder后增加多层卷积结构进行多航班不同属性信息融合与局部特征提取,从而提高模型在多步价格预测上的表现性能。【结果】随后在5个回归评价指标(MSE、RMSE、MAE、ACC以及AMS)上对模型结果进行验证。【结论】结果证明,模型能够有效提高预测准确率,明显优于其他5个对比模型(随机森林、XGBoost、LSTM、GRU、Transformer)。 [Objective]The airline industry is one of the industries that use the most complex pricing strat-egies.Even the ticket prices on the same flight fluctuate dynamically and significantly.Passen-gers can only make decisions based on experience,such as buying tickets as soon as possible,but it is not always the best choice.The traditional price forecasting methods cannot sufficient-ly capture the dependence between complex internal/external factors and the ticket prices.[Methods]This paper designs and implements the TPA-Transformer(Ticket Price Aware Transformer)to predict ticket price and proposes a related data processing method based on time series.This model adds the attention module to introduce reference information and the multi-layer convolution after the encoder to fuse the informa-tion of different features of multiple flights and extract local features to improve the model’s performance in multi-step price prediction.[Results]The model is verified on five regression evaluation indexes(MSE,RMSE,MAE,ACC,and AMS).[Conclusions]Experiments show that the model effectively improves the prediction accura-cy and is superior to other five comparison models(Random Forest,XGBoost,LSTM,GRU,and Transformer).
作者 申志豪 李娜 尹世豪 杜一 胡良霖 SHEN Zhihao;LI Na;YIN Shihao;DU Yi;HU Lianglin(Computer Network Information Center,Chinese Academy of Sciences,Beijing 100083,China;University of China Academy of Sciences,Beijing 100049,China;National Basic Science Data Center,Beijing 100083,China;Travelsky Technology Limited,Beijing 101318,China;Key Laboratory of Intelligent Passenger Service of Civil Aviation,Beijing 101318,China)
出处 《数据与计算发展前沿》 CSCD 2023年第6期115-125,共11页 Frontiers of Data & Computing
基金 国家自然科学基金重点项目(61836013) 北京市科技新星计划(Z191100001119090)。
关键词 机票价格预测 机器学习 时间序列 注意力机制 airfare price prediction machine learning time series attention mechanism
  • 相关文献

参考文献1

二级参考文献29

  • 1Feng Y, Xiao B. Integration of Pricing and Capacity Allocation for Perishable Products. To be published in European Journal of Operational Research.
  • 2Gallego G, van Ryzin G. Optimal dynamic pricing of inventories with stochastic demand over finite horizons[J]. Management Science, 1994, 40: 999-1020.
  • 3Feng Y, Gallego G. Optimal stopping times for end of season sales and optimal stopping times for promotional fares[J]. Management Science, 1995, 41: 1371-1391.
  • 4Feng Y, Xiao B. Optimal policies of yield management with multiple predetermined prices[J]. Operations Research, 2000, 48:332-343.
  • 5Feng Y, Xiao B. A continuous-time yield management model with multiple prices and reversible price changes[J]. Management Science, 2000, 46(5): 644-657.
  • 6Littlewood K. Forecasting and Control of Passengers[C]. 12th AGIFORS Symposium Proceedings, 1972, 103-105.
  • 7Belobaba P P. Airline yield management: An overview of seat inventory control[J]. Transportation Science, 1987, 21: 63-73.
  • 8Belobaba P P. Application of a probabilistic decision model to airline seat inventory control[J]. Operations Research, 1989, 37:183-197.
  • 9Wollmer R D. An airline seat management model for a single leg route when lower fare classes book first[J]. Operations Research,1992, 40: 26-37.
  • 10Brumelle S L, Walczak D. Dynamic Allocation of Airline Seat Inventory with Batch Arrivals[D]. 1997 Air Transport Research Group of the WCTR Society Proc. 3, Faculty of Commerce and Business Administration, University of British Columbia, Vancouver,BC. 1997.

共引文献21

同被引文献18

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部