期刊文献+

Generalized robust training scheme using genetic algorithm for optical neural networks with imprecise components 被引量:8

原文传递
导出
摘要 One of the pressing issues for optical neural networks(ONNs) is the performance degradation introduced by parameter uncertainties in practical optical components. Hereby, we propose a novel two-step ex situ training scheme to configure phase shifts in a Mach–Zehnder-interferometer-based feedforward ONN, where a stochastic gradient descent algorithm followed by a genetic algorithm considering four types of practical imprecisions is employed. By doing so, the learning process features fast convergence and high computational efficiency, and the trained ONN is robust to varying degrees and types of imprecisions. We investigate the effectiveness of our scheme by using practical machine learning tasks including Iris and MNIST classifications, showing more than 23%accuracy improvement after training and accuracy(90.8% in an imprecise ONN with three hidden layers and 224 tunable thermal-optic phase shifters) comparable to the ideal one(92.0%).
出处 《Photonics Research》 SCIE EI CAS CSCD 2022年第8期1868-1876,共9页 光子学研究(英文版)
基金 Ministry of Education-Singapore(MOE2018-T2-1-137,R-263-000-C84-112) National Research Foundation Singapore(QEP-P3,QEP-P2,Quantum Engineering Programme 1)。
  • 相关文献

同被引文献39

引证文献8

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部