期刊文献+

循环脉冲指数最大化的共振稀疏分解法及应用 被引量:4

A resonance sparse decomposition method based on maximizing cyclic pulse index and its application
在线阅读 下载PDF
导出
摘要 针对复杂多变工作环境下滚动轴承产生的微弱故障信息难以提取的问题,充分利用故障冲击的脉冲性与循环周期性,提出了循环脉冲度最大化的共振稀疏分解(RSD)方法。该方法以短时脉冲峰值矩的变异系数作为循环脉冲指数对轴承故障信号脉冲性与周期性进行综合表征。然后以循环脉冲指数最大化作为优化目标,采用多尺度简化粒子群算法对RSD的品质因子进行了组合优化。最后构建了最优RSD循环脉冲谱,实现了滚动轴承故障的自动辨识。仿真结果与动车轴箱轴承的故障诊断应用实例表明,提出的循环脉冲指数最大化的RSD能够有效避免强脉冲干扰造成的共振频带误判问题,实现复杂工况环境下的滚动轴承复合多故障同步诊断,具有良好的工程适用性。 It is difficult to extract the weak information of rolling bearing fault under complex and changeable operating environments.To address this issue,an optimized resonance sparse decomposition(RSD) based on maximizing the cyclic pulse index(CPI) is proposed,which takes full advantage of pulse characteristics and cycle period characteristics of fault impacts.Firstly,the variation coefficient of the short-time pulse peak moment is used as the CPI to comprehensively characterize the pulse and periodicity of the bearing fault signal.Then,the quality factors of RSD are optimized by the multi-scale simplified particle swarm optimization algorithm with the objective of maximizing the CPI.Finally,the cyclic pulse spectrum of the low-frequency resonance component is established to automatically identify the bearing faults.The results of simulation and applications in the fault diagnosis of EMU axle box bearings show that the proposed method effectively avoids the misjudgment of resonance frequency band caused by strong pulse interferences,and performs well in the synchronous diagnosis of bearing compound faults under complex working conditions,which demonstrates its engineering applicability in the field of bearing fault diagnosis.
作者 刘小峰 黄洪升 柏林 陈兵奎 Liu Xiaofeng;Huang Hongsheng;Bo Lin;Chen Bingkui(College of Mechanical and Vehicle Engineering,Chongqing University,Chongqing 400044,China)
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2022年第5期209-217,共9页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(51975067,52175077)项目资助。
关键词 动车轴箱轴承 共振稀疏分解 循环脉冲谱 故障诊断 EMU axle box bearing resonance sparse decomposition cyclic pulse spectrum fault diagnosis
  • 相关文献

参考文献6

二级参考文献65

  • 1罗忠辉,薛晓宁,王筱珍,吴百海,何真.小波变换及经验模式分解方法在电机轴承早期故障诊断中的应用[J].中国电机工程学报,2005,25(14):125-129. 被引量:67
  • 2朱天,白似雪.基于模式距离度量的时间序列相似性搜索[J].微计算机信息,2007,23(30):216-217. 被引量:8
  • 3Ming Y, Chen J, Dong G M. Weak fault feature extraction of rolling bearing based on cyclic Wiener filter and envelope spectrum[J]. LMechanical System and Signal Processing, 2011, 25(5): 1773-1785.
  • 4Jiang R L, Chen J, Dong G M, et al. The Weak fault diagnosis and condition monitoring of rolling element bearing using minimum entropy deconvolution and envelop spectrum[J]. Engineering Science Engineers, Part C: Journal of Mechanical Engineering Science, 2013, 227(5): 1116-1129.
  • 5Mcdonald G L, Zhao Q, Zuo M J. Maximum correlated kurtosis deconvolution and application on gear tooth chip fault detection[J]. Mechanical Systems and Signal Processing, 2012, 33: 237-255.
  • 6Kennedy J , Eberhart R C . Particle swarm optimization[C]//IEEE International Conference on Neural Networks, Perth, Australia, 1995: 1942-1948.
  • 7Su W S, Wang F T, Zhu H, et al. Rolling element bearing faults diagnosis based on optimal morlet wavelet filter and autocorrelation enhancement[J]. Mechanical System andSignal Processing, 2010, 24(5): 1458-1472.
  • 8Antoni J, Bonnardot F, Raad A, et al. Cyclostationary modeling of rotating machine vibration signals[J]. Mechanical Systems and Signal Processing, 2004, 18(6): 1285-1314.
  • 9Randall R B, Antoni J, Chobsaard S. The relationship between spectral correlation and envelope analysis in the diagnosis of bearing faults and other cyclostationary machine signals[J]. Mechanical Systems and Signal Processing, 2001, 15(5): 945-962.
  • 10Qiu H, Lee J, Lin J, et al. Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics[J]. Journal of Sound and Vibration, 2006, 289(4-5): 1066-1090.

共引文献136

同被引文献25

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部