摘要
为探究蒸养制度对多元胶凝体系超高韧性混凝土(STC)抗压强度的影响,进行了水泥-微珠-硅灰、水泥-微珠及水泥-微珠-纳米SiO_(2)三种多元胶凝体系STC在恒温时间分别为2、3、4 d三种蒸养制度下的抗压强度试验及光学显微镜测试。结果表明:三种多元胶凝体系中水泥-微珠胶凝体系STC工作性能最优异,而硅灰、纳米SiO_(2)掺入均会降低STC拌和物的工作性能;STC最佳恒温时间为2 d,水泥-微珠-硅灰胶凝体系、水泥-微珠胶凝体系及水泥-微珠-纳米SiO_(2)胶凝体系STC最高抗压强度分别为173.1、171.7、162.1 MPa,恒温时间过长会增加基体内部孔隙,形成薄弱界面,对STC抗压强度不利。水泥-微珠-硅灰胶凝体系STC中各组分优势得到充分发挥,基体结构密实性增强。
In order to explore the effect of steam curing system on the compressive strength of multi-component cementitious system super toughness concrete(STC),the compressive strength tests and optical microscope tests of three multi-component cementitious systems STC with constant temperature time of 2,3 and 4 d were carried out,which includes cement-microsphere-silica fume,cement-microsphere and cement-microsphere-nano SiO_(2).The results show that the cement-microsphere STC performance of the three kinds of multi-component cementitious system is the best,while mixing silica fume and nano SiO_(2) may reduce the working performance of STC mixture.The optimum constant temperature time of STC is 2 d.The maximum compressive strength of cement-microsphere-silica fume cementitious system,cement-microsphere cementitious system and cement-microsphere-nano SiO_(2) cementitious system are 173.1,171.7 and 162.1 MPa respectively.Too long constant temperature time will increase the pores in the matrix and form a weak interface,which is unfavorable to the compressive strength of STC.The advantages of each component in the cement-microsphere-silica fume cementitious system STC are brought into full play,and the compactness of the matrix structure is enhanced.
作者
肖换芳
张华
宋海宏
崔圣爱
曾慧姣
李固华
XIAO Huanfang;ZHANG Hua;SONG Haihong;CUI Shengai;ZENG Huijiao;LI Guhua(The 3rd Engineering Co.Ltd.of China Railway 12th Bureau Group,Taiyuan 030027,China;School of Civil Engineering,Southwest Jiaotong University,Chengdu 610031,China)
出处
《铁道建筑》
北大核心
2022年第5期152-155,共4页
Railway Engineering
基金
国家自然科学基金(51678492)
成都市科技计划项目(2021-YF05-00138-SN)。
关键词
工程材料
超高强度
试验研究
超高韧性混凝土
蒸汽养护
胶凝体系
工作性能
细观结构
engineering materials
super strength
experimental research
super toughness concrete
steam curing
cementitious system
working performance
meso-structure