期刊文献+

基于边缘熵和局部FT分布的超声图像分割模型 被引量:3

Ultrasound image segmentation model based on edge entropy and local FT distribution
在线阅读 下载PDF
导出
摘要 由于采用高斯和瑞利分布描述超声图像均存在较大偏差,且分割过程缺乏超声图像边缘信息引导,致使其相应的局部高斯分布拟合(LGDF)模型和局部瑞利分布拟合(LRDF)模型对超声图像分割性能不理想。针对上述问题,提出了一种边缘熵加权的局部Fisher-Tippett(FT)分布拟合模型。该模型根据超声图像中目标和背景在局部区域满足不同的FT分布,利用最大后验概率(MAP)准则导出超声图像分割的最小化能量函数。该能量函数的求解采用水平集方法,且通过在长度正则化项中引入边缘熵构造加权函数,引导活动轮廓更好地捕获分割目标的弱边缘。通过大量真实超声图像实验验证了提出模型在局部FT分布拟合和边缘熵引入2方面的改进均能有效提升分割性能,且在定性和定量对比评价上均优于现有的多种超声图像分割方法。 Local Gaussian distribution fitting(LGDF) or local Rayleigh distribution fitting(LRDF) models often give relatively poor performance on segmenting ultrasound images, due to the large bias in describing ultrasound images by either Gaussian or Rayleigh distribution, and the lack of guidance for ultrasound images edge information during image segmentation. To deal with these problems, an edge entropy weighted local Fisher-Tippett(FT) distribution fitting model was presented in this paper. According to the fact that the object and background in local regions of ultrasound images meet with different FT distributions, the proposed model adopted maximum a posteriori(MAP)probability to derive an energy function to be minimized. The energy function was solved by the level set method.Meanwhile, the edge entropy was included into the length regularization term as a weight function to guide the active contour to better capture the obscure and weak edges of the object. Extensive experiments on synthetic and real ultrasound images have demonstrated that the proposed model can not only achieve an enhancement for the local FT distribution fitting and the inclusion of the edge entropy, but also qualitatively and quantitatively outperform many of the existing methods.
作者 崔文超 徐德伟 孙水发 潘志红 王习东 CUI Wen-chao;XU De-wei;SUN Shui-fa;PAN Zhi-hong;WANG Xi-dong(College of Computer and Information Technology,China Three Gorges University,Yichang Hubei 443002,China;Yichang Key Laboratory of Intelligent Medicine,China Three Gorges University,Yichang Hubei 443002,China;People’s Hospital of China Three Gorges University,Yichang Hubei 443000,China)
出处 《图学学报》 CSCD 北大核心 2022年第2期263-272,共10页 Journal of Graphics
基金 国家自然科学基金项目(61871258,U1703261)。
关键词 超声图像 边缘熵 Fisher-Tippett分布 活动轮廓 水平集方法 ultrasound image edge entropy Fisher-Tippett distribution active contour level set method
  • 相关文献

参考文献7

二级参考文献82

  • 1李钧,周晓东,罗二平,韩增辉,张民,郑敏娟,王莉.实时超声造影诊断肾脏肿瘤的应用研究[J].中国医学影像技术,2006,22(4):591-593. 被引量:24
  • 2Vovk U, Pernus F, Likar B. A review of methods for correction of intensity inhomogeneity in MRI [J]. IEEE Transactions on Medical Imaging, 2007, 26(3): 405-421.
  • 3Wells W M, Grimson W E L, Kikinis R,et al. Adaptive segmentation of MRI data [J]. IEEE Transactions on Medical Imaging, 1996, 15(4): 429-441.
  • 4Pham D L, Prince J L. An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities [J]. Pattern Recognition Letters, 1999, 20(1): 57-68.
  • 5Ahmed M N, Yamany S M, Mohamed N,et al. A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data [J]. IEEE Transactions on Medical Imaging, 2002, 21(3): 193-199.
  • 6Li C M, Kao C Y, Gore J C, et al. Implicit active contours dri- ven by local binary fitting energy[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Minnesota, USA: [s. n.], 2007: 1-7.
  • 7Li C M, Kao C Y, Gore J C, et al. Minimization of region-scalable fitting energy for image segmentation [J]. IEEE Transactions on Image Processing, 2008, 17(10): 1940-1949.
  • 8Chen Y J, Zhang J W, Macione J. An improved level set method for brain MR images segmentation and bias correction [J]. Computerized Medical Imaging and Graphics, 2009, 33(7): 510-519.
  • 9Li C M, Huang R, Ding Z H, et al. A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI [J]. IEEE Transactions on Image Processing, 2011, 20(7): 2007-2016.
  • 10Wang L, He L, Mishra A, et al. Active contours driven by local Gaussian distribution fitting energy [J]. Signal Processing, 2009, 89(12): 2435-2447.

共引文献40

同被引文献30

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部