期刊文献+

局部高斯分布拟合的脑MR图像分割及有偏场校正 被引量:4

Multiphase level set method for segmentation and bias correction of brain MR images
原文传递
导出
摘要 为实现对灰度不均匀脑核磁共振(MR)图像分割的同时进行有偏场估计并校正,提出一种基于局部高斯分布拟合(LGDF)模型的多相水平集方法。通过分析图像有偏场模型的局部特性,将有偏场乘性因子引入到图像局部灰度均值的表达中,从而使有偏场乘性因子成为新的能量函数的变量。能量函数的迭代最小化既实现了目标组织分割,又有效估计了有偏场。合成图像和仿真脑MR图像实验结果表明,本文方法比现有多种方法分割性能更好,且利用本文方法估计的有偏场校正后的图像有更好的视觉效果。 In order to implement segmentation and bias correction simuhaneously for brain Magnetic Resonance (MR) images with intensity inhomogeneity, a muhiphase level set method based on local Gaussian distribution fitting (LGDF) model is proposed in this paper. By analyzing the local properties of the bias field model, the multiplicative factor of the bias field is induced into the local intensity means formation and thus it becomes a new variable of the energy function. Therefore, the minimization of the energy function by iteration does not only accomplish the objective tissue segmentation, but also makes an effective estimation to the bias field. Experiments on synthetic images and simulated brain MR images show the proposed method is superior to the state-of-the-art on segmentation results. Moreover, the corrected images using the bias field estimated by our method have a better visual effect.
出处 《中国图象图形学报》 CSCD 北大核心 2013年第5期552-557,共6页 Journal of Image and Graphics
基金 国家自然科学基金项目(60903127 61202314) 西北工业大学"翱翔之星计划"项目(11GH0315)
关键词 图像分割 多相水平集方法 有偏场校正 灰度不均匀 脑MR图像 image segmentation multiphase level set method bias correction intensity inhomogeneity brain MR image
  • 相关文献

参考文献15

  • 1Vovk U, Pernus F, Likar B. A review of methods for correction of intensity inhomogeneity in MRI [J]. IEEE Transactions on Medical Imaging, 2007, 26(3): 405-421.
  • 2Wells W M, Grimson W E L, Kikinis R,et al. Adaptive segmentation of MRI data [J]. IEEE Transactions on Medical Imaging, 1996, 15(4): 429-441.
  • 3Pham D L, Prince J L. An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities [J]. Pattern Recognition Letters, 1999, 20(1): 57-68.
  • 4Ahmed M N, Yamany S M, Mohamed N,et al. A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data [J]. IEEE Transactions on Medical Imaging, 2002, 21(3): 193-199.
  • 5Li C M, Kao C Y, Gore J C, et al. Implicit active contours dri- ven by local binary fitting energy[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Minnesota, USA: [s. n.], 2007: 1-7.
  • 6Li C M, Kao C Y, Gore J C, et al. Minimization of region-scalable fitting energy for image segmentation [J]. IEEE Transactions on Image Processing, 2008, 17(10): 1940-1949.
  • 7王利,陈允杰,韦志辉,夏德深,王平安.克服灰度不均匀性的脑MR图像分割模型[J].计算机辅助设计与图形学学报,2009,21(11):1624-1631. 被引量:17
  • 8Chen Y J, Zhang J W, Macione J. An improved level set method for brain MR images segmentation and bias correction [J]. Computerized Medical Imaging and Graphics, 2009, 33(7): 510-519.
  • 9Li C M, Huang R, Ding Z H, et al. A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI [J]. IEEE Transactions on Image Processing, 2011, 20(7): 2007-2016.
  • 10王海军,柳明.克服灰度不均匀性的脑MR图像分割及去偏移场模型[J].山东大学学报(工学版),2011,41(3):36-41. 被引量:2

二级参考文献19

  • 1陈允杰,张建伟,韦志辉,夏德深,王平安.同时配准-分割脑MR图像的耦合变分模型[J].计算机辅助设计与图形学学报,2007,19(2):215-220. 被引量:6
  • 2陈健,田捷,薛健,戴亚康.多速度函数水平集算法及在医学分割中的应用[J].软件学报,2007,18(4):842-849. 被引量:14
  • 3WELLS W M, GRIMSON W E L, KIKINIS R, et al. Adaptive segmentation of MRI data[J]. IEEE Transactions on Medical Imaging, 1996, 15(4) : 429-442.
  • 4PHAM D L, PRINCE J L. Adaptive fuzzy segmentation of magnetic resonance images [J]. IEEE Transactions on Medical Imaging, 1999, 18(9):737-752.
  • 5CHEN W, GIGER M L, A fuzzy c-means (FCM) based algorithm for intensity inhomogeneity correction and segmentation of MR images [ C ]//Proceedings of the IEEE International Symposium on Biomedical Imaging. Nanoto Macro, Arlington: IEEE International Symposium, 2004: 1307-2310.
  • 6LI C, HUANG R, DING Z, et at. A variational level set approach to segmentation and bias correction of images with intensity inhomogeneity [ C ]//Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2008 Lecture Notes in Computer Science, New York: [s. n] , 2008 : 1083-1091.
  • 7LI C, KAO C, GORE J C, et al. Implicit active contours driven by local binary fitting energy[C]//IEEE conference on Computer Vision and Pattern Recognition (CVPR). Minneapolis : IEEE Computer Society, 2007 : 1-7.
  • 8VESE L A, CHANT F. A multiphase level set framework for image segmentation using the mumford and shah model [ J ]. International Journal of Computer Vision, 2002, 50 ( 3 ) : 271-293.
  • 9LI C, XU C, GUI C, et al. Level set evolution without re-initialization:a new variational formulation [C]// Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego: IEEE Computer Society, 2005 : 430-436.
  • 10Luminita A. Vese,Tony F. Chan. A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model[J] 2002,International Journal of Computer Vision(3):271~293

共引文献17

同被引文献38

  • 1徐春燕,冯学智,赵书河,肖鹏峰.基于数学形态学的IKONOS多光谱图像分割方法研究[J].遥感学报,2008,12(6):980-986. 被引量:11
  • 2蒋璐媛,肖鹏峰,冯学智,李云,朱榴骏.基于亚分数混淆矩阵的中国典型区大尺度土地覆盖数据集评价[J].遥感技术与应用,2015,30(2):353-363. 被引量:6
  • 3宫改云,高新波,伍忠东.FCM聚类算法中模糊加权指数m的优选方法[J].模糊系统与数学,2005,19(1):143-148. 被引量:81
  • 4刘永学,李满春,毛亮.基于边缘的多光谱遥感图像分割方法[J].遥感学报,2006,10(3):350-356. 被引量:38
  • 5Tian G J,Xia Y,Zhang Y,et al.Hybrid genetic and variational expectation-maximization algorithm for Gaussian-mixture-model-based brain MR image segmentation.Information Technology in Biomedicine,IEEE Transactions on,2011; 15(3):373-380.
  • 6Zhang T,Xia Y,Feng DD.Clonal selection algorithm for gaussian mixture model based segmentation of 3d brain MR images.Intelligent Science and Intelligent Data Engineering.Springer Berlin Heidelberg,2012:295-302.
  • 7Xia Y,Eberl S,Wen L,et al.Dual-modality brain PET-CT image segmentation based on adaptive use of functional and anatomical information.Computerized Medical Imaging and Graphics,2012 ; 36 (1):47-53.
  • 8Descombes X.Markov models and MCMC algorithms in image processing.Academic Press Library in Signal Processing:Volume 4:Image,Video Processing and Analysis,Hardware,Audio,Acoustic and Speech Processing,2013 ; 30 (4):293-299.
  • 9Ulutas B H,Kulturel-Konak S.A review of clonal selection algorithm and its applications.Artificial Intelligence Review,2011 ; 36 (2):117-138.
  • 10Gong M,Jiao L,Zhang L.Baldwinian learning in clonal selection algorithm for optimization.Information Sciences,2010 ; 180 (8):1218-1236.

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部