期刊文献+

Bias Correction of Channel Brightness Temperature of FY-4A Hyperspectral GIIRS Based on Machine Learning 被引量:1

在线阅读 下载PDF
导出
摘要 Data assimilation algorithm depends on the basic assumption of unbiased observation error,so bias correction is one of the important steps in satellite data processing.In this paper,using the geostationary interferometric infrared sounder(GIIRS)of FengYun-4 A(FY-4 A)observation and simulated brightness temperature based on background field,the brightness temperature bias correction of GIIRS channel is carried out based on random forest(RF)and extreme gradient boosting(XGBoost)machine learning.Based on the case data of Typhoon"Haishen",the correction effect of machine learning method is compared with Harris and Kelly’s"off-line"method,and the importance of different predictors to the bias correction is further discussed.The experimental results show that the systematic bias is effectively corrected,and the following conclusions are obtained:the correction effect is improved by adding geographic information(longitude and latitude)into the predictors;under the given combination of predictors,the correction effect of XGBoost is the best,followed by random forest,and finally offline method,but the three methods can correct the bias effectively;compared with long wave data of FY-4 A/GIIRS,machine learning may be more feasible for medium wave data bias correction.
出处 《Meteorological and Environmental Research》 CAS 2022年第1期26-30,共5页 气象与环境研究(英文版)
基金 Supported by the National Natural Science Foundation of China(41805080) Special Project for Innovation and Development of Anhui Meteorological Bureau(CXB202101) Central Asian Fund for Atmospheric Science Research(CAAS202003)。
  • 相关文献

参考文献3

二级参考文献23

共引文献63

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部