期刊文献+

面向多路源信号的单通道盲去卷积算法研究

Research on Single-channel Blind Deconvolution Algorithm for Multi-source Signals
在线阅读 下载PDF
导出
摘要 传统的单通道盲去卷积的方法存在仅能从混合信号中分离出2路源信号的局限,考虑到以上问题,该文提出一种基于优化的深度卷积生成对抗网络的单通道盲去卷积算法(SCBDC),能从1路混合信号中分离和解卷积出3路以上的独立源信号和混合矩阵。该文实验在汉字和遮挡图像数据集上进行,随机选择4路信号与混合矩阵进行卷积混合,实验结合峰值信噪比(PSNR)和信号相关性指标来评价分离的效果,结果显示,该算法能够有效地分离出多路源信号并去卷积。 Traditional single-channel blind deconvolution method has the limitation that it can only separate two sources from a mixture.Considering this problem,a Single-Channel Blind Deconvolution algorithm based on optimized deep Convolutional generative adversarial networks(SCBDC)is proposed to separate and deconvolve more than three independent sources and mixing matrix only from a mixture.The experiments are carried on the occlusion Chinese character image datasets,four sources are randomly selected to be mixed with mixing matrix.Peak Signal to Noise Ratio(PSNR)and signal correlation index are combined to evaluate the separation effect.The result shows that the multiple sources can be effectively separated and deconvolved.
作者 刘婷 尹甜甜 龚真颖 郭一娜 LIU Ting;YIN Tiantian;GONG Zhenying;GUO Yina(Electronics and Communication Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China)
出处 《电子与信息学报》 EI CSCD 北大核心 2022年第1期230-236,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61301250) 国家留学基金委地区合作与高层次人才培养项目[2020]1417 山西省重点研发计划资助项目(201803D421035) 山西省自然科学优秀青年基金(201901D211313) 山西省回国留学人员科研教研资助项目(HGKY2019080)。
关键词 盲源分离 单通道盲去卷积 多源信号分离 生成对抗网络 混合矩阵估计 Blind source seperation Single-channel blind deconvolution Multi-source separation Generative adversarial networks Mixing matrix estimation
  • 相关文献

参考文献5

二级参考文献41

  • 1张晓冬,王桥,吴乐南.利用脊的特征进行信号盲分离[J].电子学报,2004,32(7):1156-1159. 被引量:7
  • 2蔡权伟,魏平,肖先赐.信道重叠信号分离方法的发展与展望[J].电子学报,2005,33(B12):2446-2454. 被引量:4
  • 3Rafae C Gonzalez,Richard E Woods, Steven L Eddins.数字图像处理[M].电子工业出版社,2006.
  • 4阮秋琦.数字图像处理学[M].电子工业出版社,2003.
  • 5DuaneHanselman,等.精通matlab7[M].清华大学出版社,2006.
  • 6邓智恒,罗伟栋.实际语音盲分离客观评价指标研究[J].电声技术,2007,31(9):61-65. 被引量:3
  • 7贾云龙,张永刚,姚忠山.基于FastlCA算法的混合声信号分离技术[J].声学技术,2009(2):18-20.
  • 8BOGDAN M, MAARTEN D V, IVAN G C, et al. Combining EMD with ICA for extracting independent sources fromsingle channel and two - channel data [ C]. Argentina:32nd Annu- M International Conference of the IEEE EMBS Buenos Aires, August 31 - September 4,2010.
  • 9COMON P. Independent component analysis:a new concept [ J ]. Signal Processing, 1994,36 ( 3 ) :287 - 314.
  • 10Lu Yao, LI Shuangtian. Underdetermined blind source sepa- ration of anechoic speech mixtures in the time - frequency domain [ C ]. ICSP2008 Proceedings,2008 : 22 - 25.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部