期刊文献+

实际语音盲分离客观评价指标研究 被引量:3

Performance Evaluation for Speech Signals Blind Separation in Real-environment
在线阅读 下载PDF
导出
摘要 由于没有可比对的语音源信号,如何评价实际语音盲分离的效果非常困难。目前还没有相应的客观评价指标。将语音特征引入实际语音盲分离评价指标,提出了基于信号相关性和Mel倒谱系数高斯混合模型的听觉-独立性联合指标,客观评价了实际语音盲分离的性能。 Since speech signals are unavailable, it is difficult to evaluate BSS(Blind Signal Separation) performance in the real-environment. A new separation method based on ear mechanism and independent measure is proposed. The signal correlation is incorporated into MFCC(Mel-Frequency Cepstrum Coefficient ) -based GMM(Gauss Mixed Model) to evaluate the separation performance,in which speech signals are unnecessary.
出处 《电声技术》 2007年第9期61-65,69,共6页 Audio Engineering
基金 国家自然科学基金(60472103) 上海市科委应用技术项目 上海市重点学科项目(T0102)
关键词 语首处理 独立分量分析 高斯混合模型 盲分离评价指标 同步比较 speech signal processing independent component analysis GMM BSS performance synchronouscompare
  • 相关文献

参考文献9

  • 1SURQUIST P, HIINDEL P, OTTERSTEN B. Kalman filtering for low distortion speech enhancement in mobile communication[C]// Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. [S.l.]:IEEE Press, 1997,2:1 219-1 222.
  • 2张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:212
  • 3徐明彪,朱维彰.关于信号盲分离分离效果评判指标的分析[J].杭州电子工业学院学报,2002,22(3):63-66. 被引量:12
  • 4JUTTEN C, HERAULT J. Blind separation of sources Part Ⅰ:an adaptive algorithm based on neuromimetic architecture[J]. IEEE Trans. on Signal Processing, 1991,24: 1-10.
  • 5陈国,胡修林,杨灵,朱耀庭.基于输出的语音质量客观评价方法研究[J].华中科技大学学报(自然科学版),2001,29(5):86-88. 被引量:1
  • 6COMON P. Independent component analysis-a new concept?[J]. IEEE Trans. on Signal Processing,1994,36(3):287-314.
  • 7RAMACHANDRAN R P, FARRELL K R, RAMACHANDRAN R, et al. Speaker recognition-general classifier approaches and data fusion methods[J]. Patter Recognition,2002,35.2 801-2 821.
  • 8CAMPBELL W, ASSALEH K, BROUN C. Speaker recognition with polynomial classifiers[J]. IEEE Trans. on Speech and Audio Processing, 2002,10 : 205-212.
  • 9REYNOLDS D A, ROSE R C. Robust text-independent speaker identification using Gaussian mixture speaker models[J]. IEEE Trans. on Speech and Audio Processing, 1995,3( 1 ) :72-83.

二级参考文献63

  • 1[1]Amari S.A theory of adaptive pattern classifiers [J].IEEE Trans.Electronic Computers,1967,16:299-307.
  • 2[2]Amari S.Natural gradient works efficiently in learning [J].Neural Comoutation,1998,10:251-276.
  • 3[3]Amari S,Cichocki A.Adaptive blind signal processing:Neural network approaches [J].Proc.IEEE,1998 ,86:2026-2048.
  • 4[4]Basak J,Amari S.Blind separation of uniformly distributed signals:A general approach [J].IEEE Trans.Neural Networks,1999,10:l173-1185.
  • 5[5]Bell A J,Sejnowski T J.An information-maximization approach to blind separation and blind deconvolution [J].Neural Computation,1995,7:1129-1159.
  • 6[6]Burel G.Blind separation of .sources:A nonlinear neural algorithm [J].Neural Networks,1992,5:937-947.
  • 7[7]Cao X R,Liu R W.A general approach to blind source separation [J].IEEE Trans.Signal Processing,1996,44:562-571.
  • 8[8]Cardoso J F.Blind signal separation:Statistical principles [J].Proc.IEEE,1998,86(10):2009-2025.
  • 9[9]Cardoso J F,Laheld B.Equivariant adaptive source separation [J].IEEE Trans.Signal Processing,1996,44:3017 - 3029.
  • 10[10]Cardoso J F,Souloumiac A.Blind beamfomrming for non-Gaussian signals[J].lEE Proc.-F,1993,140:362-370.

共引文献220

同被引文献83

引证文献3

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部