摘要
为了准确衡量智能制造企业的研发创新效率从而进一步推动我国制造业的智能化进程,本文将创新行为划分为研发创新与商业成果转化两个阶段,采用网络DEA模型对48家国内上市智能制造企业2015—2020年的创新效率进行了定量衡量,并通过Tobit回归探究了企业内部经营对不同阶段创新效率的调节作用。结果表明:我国大部分智能制造企业仍处于DEA无效状态,其研发创新效率与成果商业转化效率难以共同达到生产前沿面;且企业微观生产运营能力,营销能力,财务能力和组织管理能力均能在一定程度上影响智能制造企业总体创新效率,以及不同阶段下企业营销能力与财务能力对效率值的作用效果相反。
In order to accurately measure the innovation efficiency of intelligent manufacturing enterprises and further promote the process of manufacturing intelligence,this paper divides innovation behavior into R&D stage and Achievement transformation stage,measures the innovation efficiency of 48 domestic listed intelligent manufacturing enterprises from 2015 to 2020 by using network DEA model,and then reveals the correlation between innovation and internal operational abilities through Tobit regression.The results show that most intelligent manufacturing enterprises in China are still in the state of DEA ineffectiveness,and their R&D innovation efficiency and achievement transformation efficiency are difficult to reach the production frontier together;Moreover,the operation,marketing,financial condition and management ability of enterprises can affect the overall innovation efficiency of intelligent manufacturing enterprises to a certain extent,and the effect of enterprise marketing and financial condition on the efficiency value is opposite at different stages.
作者
张梦成
宋良荣
ZHANG Mengcheng;SONG Liangrong(School of Management,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处
《技术与创新管理》
2022年第1期21-29,共9页
Technology and Innovation Management
关键词
网络DEA模型
智能制造
创新效率
network DEA model
intelligent manufacturing
innovation efficiency