期刊文献+

胸部CT双影像组学模型评估肺结节良恶性及浸润性 被引量:12

A Dual-Function CT-Based Radiomics Model in Differentiating the Malignancy and Invasiveness of Pulmonary Nodules
在线阅读 下载PDF
导出
摘要 目的探讨特定双影像组学模型鉴别CT平扫不同大小肺结节良恶性及浸润性的能力。资料与方法回顾性分析4892个CT平扫肺结节病灶,由高年资医师勾画病灶并标注病灶的良恶性及浸润性(其中2014个结节病理确诊为恶性),依据所有病灶整体体积分布情况(上、下四分位数为界值)分为大、中、小结节组,使用达尔文科研平台的双影像组学模型对所有病灶进行特征提取并分析,判断病灶的良恶性及浸润程度。以医师组标注结果为正确结果进行统计分析,判断在不同大小肺结节上的模型准确率。结果组学模型对病灶体积>434.75 mm3(平均直径9.4 mm)的大结节病灶判定准确率为92%,尤其对恶性浸润性腺癌判断准确率为100%;对病灶体积<51.63 mm3(平均直径4.6 mm)的小病灶判断准确率为100%;对于介于两者中间的中等大小病灶,在浸润程度由低到高的预测准确度分别为0.33、0.61及0.42。结论基于影像组学的模型对较大肺结节病灶良恶性判断准确性较高,尤其是恶性程度较高的浸润性腺癌,可用于辅助医师对恶性病变的进一步判定及诊断。 Purpose To evaluate a dual-function CT-based radiomics model in differentiating the malignancy and invasiveness of pulmonary nodules(PN)in different sizes.Materials and Methods A total of 4892 PN on CT images were retrospectively analyzed.All nodules(including 2014 pathologically diagnosed nodules)were delineated by a qualified senior radiologist.The malignancy and invasiveness of these PN were evaluated and classified into three groups(small,medium and large group)based on the total volume distribution(upper and lower quartile).Radiomic features of all lesions were extracted and analyzed to evaluate the malignancy and invasiveness of these nodules via Darwin scientific research platform.The accuracy performances of the model were evaluated and statistically analyzed according to the radiologists’diagnosis as the correct standard.Results The accuracy for predicting PN malignancy was 92%in large PN group(lesion volume>434.75 mm3,mean diameter>9.4 mm),particularly,100%accuracy both in distinguishing malignant invasive adenocarcinoma and diagnosing in the small PN group(lesion volume<51.63 mm3,diameter<4.6 mm).However,the relatively poor accuracy was showed in distinguishing the invasiveness degree of medium group,with 0.33,0.61 and 0.42,respectively.Conclusion The dual-function CT-based radiomics model presented good accuracy performance in large PN group,especially in invasive adenocarcinoma group,which can be used to assist radiologists to further diagnose malignancy PN.
作者 张力 肖丹丹 ZHANG Li;XIAO Dandan(Department of Medical Engineering,Beijing Hospital Traditional Chinese Medicine,Beijing 101300,China;不详)
出处 《中国医学影像学杂志》 CSCD 北大核心 2021年第5期514-518,共5页 Chinese Journal of Medical Imaging
关键词 肺结节 体层摄影术 螺旋计算机 影像组学 达尔文智能科研平台 包裹式特征筛选方法 逻辑回归 支持向量机 诊断 鉴别 Pulmonary nodule Tomography,spiral computed Radiomics Darwin scientific research platform Recursive feature elimination Logistic regression Support vector machine Diagnosis,differential
  • 相关文献

参考文献7

二级参考文献31

  • 1WESTON J, MUKHERJEE S, CHAPELLE O, et al. Fea- ture selection for SVMs [ C ]//Proc of Neural Information Processing Systems. Denver, USA: 2000: 668-674.
  • 2LI Juntao, JIA Yingmin, LI Wenlin. Adaptive huberized support vector machine and its application to microarray / classification [ J ]. Neural Computing and Applications, 2011, 20(1) : 123-132.
  • 3LEE C, LEU Y. A novel hybrid feature selection method for microarray data analysis [ J]. Applied Soft Computing, 2011, 11(1) : 208-213.
  • 4GUYON I, WESTON J, BARNHILL S, et al. Gene selec- tion for cancer classification using support vector machines [J]. Machine Learning, 2002, 46( 1/2/3): 389-422.
  • 5TAX D M J, ROBERT PW D. Support vector domain de- scription[J]. Pattern Recognition Letters, 1999, 20( 11 ): 1191-1199.
  • 6SCHIILKOPP B, BURGEST C, VAPNIK V. Extracting sup- port data for a given task[ C]//Proceedings of First Interna- tional Conference on Know ledge Discovery and Data mining. 1995 : 262-267.
  • 7TAX D M J, DUIN R P W. Data domain description using support vectors[ C]//ESANN. Facto, Brussels, 1999: 251- 256.
  • 8BENNEq'T C C K P. A linear programming approach to nov- elty detection [ C ]//Advances in Neural Information Process- ing Systems 13: Proceedings of the 2000 Conference. Bos- ton: MIT Press, 2001, 13: 395-401.
  • 9ZHANG Li, WANG Bangjun, LI Fanzhang, et al. Support vector novelty detection in hidden space [ J ]. Journal of Computational Information Systems, 2011 ( 7 ) : 1-7.
  • 10JEONG Y S, KONG I H, JEONG M K, et al. A new fea- ture selection method for one-class classification problems [ J]. Systems, Man, and Cybernetics, Part C: Applica- tions and Reviews, 2012, 42(6) : 1500-1509.

共引文献247

同被引文献116

引证文献12

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部