期刊文献+

基于月面表取采样触月压痕的月壤力学状态分析 被引量:4

Mechanical performance identification for lunar soil in lunar surface sampling
原文传递
导出
摘要 以表取采样机械臂的触月传感组件与月表接触留下的压痕为研究对象,通过监视相机提取压痕的几何特征参数,结合偏最小支持向量机(LSSVM)建立评估月壤力学状态模型。采集压痕试验数据264组,按力学状态把数据随机划分为建模组和验证组,以压痕的深度、长边长、压痕周长和面积为输入变量,建立LSSVM模型,验证组预测精度分别为93.75%、83.33%和87.50%。结果表明,该模型可作为一种有效的判别手段,为表取采样深度的确定提供参考。 To ensure the safety of the sampling task on lunar surface,the lunar sampling arm should contact with lunar soil in advance to identify the lunar soil compactness.Based on geometric parameters of the indentation between the manipulator and lunar soil obtained by the stereo cameras,a model was established to identify mechanical performance of the lunar soil using least squares support vector machine.A total of264 data were collected.The data was split into two data set randomly,one was calibration set(contains96 data)and the other was prediction set(contains 48 data).Indentation length,deep,area and cube were used as input parameters to establish the prediction model,and the accuracy of prediction set are 93.75%of CE51,83.33%of CE52,and 87.50%of CE53,respectively.The results show that this prediction model can be used to identify mechanical performance quickly which can be used as a method to determine the sample’s depth for lunar soil surface.
作者 王康 姚猛 李立犇 李建桥 邓湘金 邹猛 薛龙 WANG Kang;YAO Meng;LI Li-ben;LI Jian-qiao;DENG Xiang-jin;ZOU Meng;XUE Long(Beijing Institute of Spacecraft System Engineering,China Academy of Space Technology,Beijing 100094,China;Key Laboratory of Bionic Engineering,Ministry of Education,Changchun 130022,China;Key Laboratory of ModemAgricultural Equipment of Jiangxi Province,Jiangxi Agricultural University,Nanchang 330045,China)
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2021年第3期1146-1152,共7页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(51865018,51775233) 中国空间技术研究院预研项目(5010120160759) 江西省自然科学基金项目(20192BAB206025)。
关键词 仿生工程 地面力学 表取采样 月壤 图像处理 支持向量机 bionic engineering terramechanics surface sampling lunar regolith image processing support vector machine
  • 相关文献

参考文献11

二级参考文献84

共引文献54

同被引文献92

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部