期刊文献+

气垫式越野机器人土壤参数识别算法及其采样点选取规则 被引量:2

Soil Parameter Identification Algorithm and Its Selection Rules of Sampling Points for Air-cushion-typed Off-road Robots
在线阅读 下载PDF
导出
摘要 正确地在线识别土壤参数是软地面越野机器人运行性能优化和控制的基础,其实施需要解决多解问题和准确性问题。利用气垫式机器人的垂向力控制自由度,提出g算法对3个土壤推力参数进行解耦和识别,能够解决多解问题。g算法的实施需要确定3个采样点,需要限制由状态噪声和测量噪声引起的土壤参数估值误差,因此有必要建立合理的采样点选取规则。其方法如下:将估值误差的减小具体表征为3方面,经数学推理分别建立采样点选取规则,再得出折中方案。结合一个工程实例进行了不同状态噪声和测量噪声水平下的估值准确性试验。试验结果表明:①在各种噪声水平下,尽管存在或多或少的误差,g算法均能够识别出3个土壤推力参数;②在各种噪声水平下,根据选取规则得到的理想采样点组合相对于随机组合具有明显优势;③系统的非线性导致状态噪声和测量噪声均对g算法的估值准确性有较大影响。上述结果显示出针对气垫式越野机器人提出g算法及其采样点选取规则的必要性和可行性。 Correct on-line identification of soil parameters is the basis of performance optimization and control for robots navigating on soft terrain, in which, the problems of multiple-solution and accuracy should be solved. By taking advantage of the additional degree of control freedom of air-cushion-typed off-road robots for vertical force to eliminate the multi-solution problem, a new identification algorithm, g-function algorithm, is proposed to estimate the three soil parameters related to the tractive effort in real time. The implementation of the g-function algorithm requires three sampling points so that it is essential to establish their selection rules to decrease the estimation error sourced from state noises and measurement noises. This decrease is embodied in three aspects, with respect to which, selection rules are respectively established by mathematical derivation firstly and then are balanced after a trade-off consideration. Based on an engineering example, experiments on estimation accuracy are conducted in different levels of state noises and measurement noises. The results show: ① The g-function algorithm succeeds to identify the three targeted soil parameters in all noise levels despite existing more or less errors; ②The ideal combination of sampling points that is obtained by using the selection rules presents an obvious advantage over random combinations in all noise levels; ③System nonlinearity makes estimation accuracy sensitive to both state noises and measurement noises. The above results, therefore, support the necessity and feasibility of the g-function algorithm and its sampling points' selection rules.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2012年第15期38-46,共9页 Journal of Mechanical Engineering
基金 国家自然科学基金(50675135 51075252) 高等学校博士学科点专项科研基金(20100073110063) 上海大学科技创新基金(A.10-0109-11-003)资助项目
关键词 气垫车 越野机器人 土壤参数 参数识别 估值误差 Air-cushion vehicle, Off-road robot, Soil parameter ,Parameter identification ,Estimation error
  • 相关文献

参考文献14

  • 1WONG J Y. Theory of ground vehicles[M]. 3rd ed. New York: John Wiley & Sons, Inc., 2001.
  • 2BEKKER M G. Introduction to terrain-vehicle systems[M]. Ann Arbor: University of Michigan Press, 1969.
  • 3RAY L E. Estimation of terrain forces and parameters for rigid-wheeled vehicles[J]. IEEE Transactions on Robotics, 2009, 25(3): 717-726.
  • 4DUMOND D A, RAY L, TRAUTMANN E. Evaluation of terrain parameter estimation using a stochastic terrain model[C]// SPIE Defense, Security and Sensing Symposium, April 13-17, 2009, Orlando WorldCenter Marriott, Orlando, USA. Bellingham: SPIE Press, 2009: 73321F.
  • 5LI L, SANDU C. On the impact of cargo weight, vehicle parameters, and terrain characteristics on the prediction of traction for off-road vehicles[J]. Journal of Terramechanics, 2007, 44(3): 221-238.
  • 6GOLDA D, IAGNEMMA K, DUBOWSKY S. Probabilistic modeling and analysis of high-speed rough-terrain mobile robots[C]//2004 IEEE InternationalConference on Robotics and Automation, Riverside Hilton & Towers, New Orleans, USA. New York: IEEE Press, 2004: 914-919.
  • 7HUTANGKABODEE S, ZWEIRI Y H, SENEVIRATNE L D, et al. Multi-solution problem for track-terrain interaction dynamics and lumped soil parameteridentification[C]//5th International Conference on Field & Service Robotics, Port Douglas, Australia. Berlin: Springer, 2005: 520-531.
  • 8TARANTOLA A. Inverse problem theory and methods for model parameter estimation[M]. Philadelphia: SIAM, 2005.
  • 9LEA T, RYE D C, DURRANT-WHYTE H K Estimation of track-soil interactions for autonomous tracked vehicles [C]// 1997 IEEE International Conference on Robotics and Automation, Albuquerque, USA. New York: IEEE, 1997: 1388-1393.
  • 10IAGNEMMA K, KANG S, SHIBLY H, et al. Online terrain parameter estimation for wheeled mobile robots with application to planetary rovers[J]. IEEE Transactions onRobotics, 2004, 20(5): 921-927.

二级参考文献19

  • 1郑永春,欧阳自远,王世杰,邹永廖.月壤的物理和机械性质[J].矿物岩石,2004,24(4):14-19. 被引量:107
  • 2HEIKEN G. Lunar sureebook [M]. London: Cambridge University Press, 1991.
  • 3SCHENKERP, BAUMGARTNER E, LINDEMANN R, et al. New planetary rovers for long-range Mars science and sample return [C]//Proceedings of SPIE, Boston, USA: Academic Press, 1998: 201-211.
  • 4PATEL N, ELLERY A. A comparative locomotion study for Mars micro-rovers and mini-rovers [C]//Proceedings of 55th International Astronautical Congress, Vancouver,Canada: Vancouver Press, 2004:1-11.
  • 5SIEGWART R, LAMON P, ESTIER T, et al. Innovative design for wheeled locomotion in rough terrain [J]. Robotics and Autonomous systems, 2002, 40: 51-62.
  • 6TAKASHI Kubota, YOJI Kuroda, YASUHARU Kunii, et al. Light-weight rover "Micro5" for lunar exploration[J]. Acta Astronautica, 2003(52): 447-453.
  • 7LEE C, DALCOLMO J, KL1NKNER J, et al. Design and manufacture of a full size breadboard exomars rover chassis [C]//Proceedings of 9th ESA workshop on advanced space technologies for robotics and automation, Noordwijk, the Netherlands: Astrionic Press, 2006: 28-39.
  • 8黄祖永.地面车辆原理[M].北京:机械工业出版社,1978.
  • 9GROMOV V, LEONOVICH A. Mechanical properties of the lunar soil sample brought by the automatic station Luna-16'[J]. Kosm Issled Moscow, 1971, 9(5): 95-101.
  • 10贝克MG.地面--车辆系统导论[M].北京:机械工业出版社.1978.

共引文献21

同被引文献11

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部