期刊文献+

基于KPCA和优化ELM的齿轮箱故障诊断 被引量:9

Gearbox Fault Diagnosis Based on Kernel Principal Component Analysis and Optimized ELM
在线阅读 下载PDF
导出
摘要 针对齿轮箱的故障表征不明显且传统分类方法精度低等问题,提出一种基于核主成分分析(KPCA)特征提取和蚁群算法优化极限学习机神经网络(ACA-ELM)分类识别相结合的齿轮箱故障诊断方法。首先,从齿轮箱的原始信号中提取时域与频域特征构成特征矩阵,利用KPCA方法降低维度,剔除冗余信息,提取有效的特征指标;其次,利用蚁群算法(Ant Colony Algorithm,ACA)对极限学习机(Extreme Learning Machine,ELM)的网络初始权值与偏置进行优化,得到最优权值与偏置组合;最后,利用ACA-ELM进行齿轮箱故障诊断实验,同时与ELM、BP、ACA-BP、GA-ELM模型对比。实验结果表明,该方法进行故障诊断的准确率可以达到98.3%,能够有效地进行齿轮箱故障诊断。 Aiming at the problem that the fault representation of gearbox is not obvious and the accuracy of traditional classification methods is not high,a gearbox fault diagnosis method based on kernel principal component analysis(KPCA)feature extraction and ant colony algorithm optimization extreme learning machine neural network(ACA-ELM)classification and recognition is proposed.Firstly,time domain and frequency domain features are extracted from the original signal of gearbox to form feature matrix.The KPCA method is used to reduce dimension,eliminate redundant information and extract effective feature indicators.Secondly,the ant colony algorithm(ACA)is used to optimize the initial network weights and biases of ELM,and the optimal weight and bias combination is obtained.Finally,ACA-ELM is used for gearbox fault diagnosis experiments,and compared with ELM,BP,ACA-BP,GA-ELM models.The experimental results show that the accuracy of fault diagnosis can reach 98.3%and this method can effectively diagnose gearbox fault.
作者 李梦瑶 周强 于忠清 LI Meng-yao;ZHOU Qiang;YU Zhong-qing(School of Data Science and Software Engineering,Qingdao University,Qingdao Shandong 266071,China)
出处 《组合机床与自动化加工技术》 北大核心 2021年第4期87-90,95,共5页 Modular Machine Tool & Automatic Manufacturing Technique
基金 山东省重点研发计划(重大创新工程)项目(2019JZZY020101)
关键词 齿轮箱 故障诊断 核主成分分析 蚁群算法 极限学习机 gearbox fault diagnosis KPCA ant colony algorithm ELM
  • 相关文献

参考文献11

二级参考文献76

  • 1吕广明,孙立宁,薛渊.神经网络在液压挖掘机工装轨迹控制中的应用[J].机械工程学报,2005,41(5):119-122. 被引量:17
  • 2曹彪,吕小青,曾敏,王振民,黄石生.短路过渡电弧焊电流信号的近似熵分析[J].物理学报,2006,55(4):1696-1705. 被引量:33
  • 3Tetsuo Furukawa . SOM of SOMs [ J ]. Neural Networks, 2009, 22 (4) : 463 - 478.
  • 4Hong-qiang Lu, Yi-zhao Wu, Song-can Chen. A new method based on SOM network to generate coarse meshes for overlapping unstructured muhigrid algorithm [ J ]. Applied Mathematics and Computation, 2003, 140 (2) : 353 - 360.
  • 5hang-xin MIAO, Jing-meng Li. Soft Fault Diagnosis for Analog Circuits Based on Slope Fault Feature and BP Neural Networks [ J ]. Tsinghua Science & Technology, 2007, 12(1) : 26 -31.
  • 6Te-Sheng Li, Cheng-Lung Huang. Defect spatial pattern recognition using a hybrid SOM - SVM approach in semiconductor manufacturing [ J ]. Expert Systems with Applications, 2009, 36( 1 ) : 374 -385.
  • 7段海滨,张祥银,徐春芳.仿生智能计算[M].北京:科学出版社,2010.
  • 8The European Wind Energy Association.Wind energy-the facts[EB/OL].[2013-09-01].http ://www.ewea.org/index.php? id=91.
  • 9赵胜利,吴雅琴,刘燕,刘永建,白永兵.基于SOM-BP复合神经网络的边坡稳定性分析[J].河北农业大学学报,2007,30(3):105-108. 被引量:14
  • 10李祚泳,汪嘉杨,郭淳.PSO算法优化BP网络的新方法及仿真实验[J].电子学报,2008,36(11):2224-2228. 被引量:56

共引文献89

同被引文献91

引证文献9

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部