摘要
Bacterial infection and tissue inflammation are the major causes of early failure of titanium-based orthopedic implants;thus,surgical implants with tunable drug releasing properties represent an appealing way to address some of these problems of bacterial infection and tissue inflammation in early age of orthopedic implants.In this work,a hybrid surface system composed of biodegradable poly(lactic-coglycolic acid)(PLGA)and titania nanotubes(TNTs)has been successfully constructed on Ti implants with the aim of preventing bacterial infection via long-term drug release.By varying the size of the TNTs and the thickness of the polymer film,the drug release profile can be tuned to achieve the optimal therapeutic action throughout the treatment time.The size of TNTs plays a dominant role in the drug loading dose of TNTs/PLGA hybrid coatings.In this work,TNTs with an average size of 80 nm can achieve the largest loading dose.Depending on the polymer thickness,significant improvement in the drug release characteristics is attained,for instance,reduced burst release(from 84%to 27%)and overall release time extended from 5 to over 40 days.In addition,the PLGA layers may favor the proliferation and osteogenesis of MC3T3-E1 mouse cells at an earlier stage.Therefore,this TNT/PLGA hybrid surface system can be employed as an effective bioplatform for improving both self-antibacterial performance and biocompatibility of Ti-based biomaterials.
基金
This work is jointly supported by Special Prophase Program forKey Basic Research of the Ministry of Science and Technology ofChina (973 Program) No. 2014CB660809
The National KeyResearch and Development Plan of China No. 2016YFC1100604
theNational Natural Science Foundation of China, Nos. 51422102,81271715, and 51671081
the Shenzhen KnowledgeInnovation Program of Basic Research Items of Guangdong Province(Grant No. JCYJ20140414090541811), China.