期刊文献+

遥感影像自动解译与变化检测方法研究与应用 被引量:7

Research and Application of Remote Sensing Image Automatic Interpretation and Change Detection
在线阅读 下载PDF
导出
摘要 随着“大数据”科技时代的来临和国内外航空航天遥感技术的不断发展,亚米级高分辨率遥感影像将作为城市规划、环境监测、土地利用、矿点监测等领域的主要数据源。目前类似于第一次全国地理国情普查的项目越来越多,项目工期紧、任务重,采用传统的人机交互式目视解译方法采集数据成本高、效率低,不能满足项目的新要求,亟须研究遥感影像变化自动检测算法,以实现遥感影像数据的自动识别。本文以高分辨率航空航天遥感影像为基础,基于主流遥感影像解译软件进行二次开发,研发了一套遥感影像自动提取、解译软件,使其能对影像变化区域进行自动提取与解译,最终形成符合地理国情监测标准规范要求的现状成果。研发的软件解决了传统目视解译方法的耗时耗力、精度与效率低等问题。将软件生成的自动提取、解译结果与前期人工解译成果进行对比分析,实验结果表明,该软件能较准确地发现变化区域,自动解译成果可应用于环保卫片执法、应急测绘等快速响应场景。 With the advent of the era of"big data"technology and the development of aerospace remote sensing technology,high-resolution remote sensing images of sub-meter level will be used as the main data sources in urban planning,environmental monitoring,land use,mine site monitoring and other fields.At present,there are more and more projects similar to the First National Geographic Survey,which has a tight time limit and heavy tasks.The traditional human-computer interactive visual interpretation method for data acquisition is expensive and inefficient and can′t meet the new requirements of the project.It is urgent to study the automatic detection algorithm of remote sensing image changes to achieve the automatic recognition of remote sensing image.Using the secondary development technology of the mainstream remote sensing image interpretation software,this paper develops a set of remote sensing image automatic extraction and interpretation software,which can automatically extract and interpret the image changing areas,and finally forms the status that meets the requirements of the geographic national condition monitoring standards.The software solves the problems of time-consuming,labor-consuming,low accuracy and efficiency of traditional visual interpretation methods.At the same time,compared with the previous manual interpretation results,the software can find the changing areas more accurately,and the automatic interpretation results can be applied to rapid response scenarios such as environmental protection,emergency mapping and so on.
作者 刘清 吴文魁 张斌才 LIU Qing;WU Wenkui;ZHANG Bincai(The Geomantic Center of Gansu Province,Lanzhou 730000,China)
出处 《测绘与空间地理信息》 2020年第12期122-125,129,共5页 Geomatics & Spatial Information Technology
关键词 遥感影像 自动解译 变化检测 目视解译 快速响应 remote sensing images automatic interpretation change detection visual interpretation rapid response
  • 相关文献

参考文献3

二级参考文献54

  • 1方圣辉,佃袁勇,李微.基于边缘特征的变化检测方法研究[J].武汉大学学报(信息科学版),2005,30(2):135-138. 被引量:17
  • 2钟家强,王润生.基于线特征的多时相遥感图像变化检测[J].国防科技大学学报,2006,28(5):80-83. 被引量:8
  • 3李牧,闫继红,李戈,赵杰.自适应Canny算子边缘检测技术[J].哈尔滨工程大学学报,2007,28(9):1002-1007. 被引量:91
  • 4E BAI.TSAVIAS, M PATERAKI, ZHANG- I.. Radio- meIric and geometric cwduation of IKONO geo-images and their use for 3I) building modeling[J]. Joint ISPRS Workshop on High Resolution Mapping from Space, Hannover, 2001 : 1 21.
  • 5ZHANG I., GRUEN A. Multi-image Matching for DSM General ion from IKONOS Imagery[J]. 1SPRS Journal of Photogramnaetry cv-. Remote Sensing, 2006,60:195-211.
  • 6Bazi Y,Bruzzone L,Melgani F. An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images[J].IEEE Transactions on Geoscience and Remote Sensing,2005,(04):874-887.doi:10.1109/TGRS.2004.842441.
  • 7Bian Z Q,Zhang X G. Pattern Recognition[M].Beijing:Tstinghua University Press,2002.
  • 8Camps-Valls G,Bruzzone L. Kernel-based methods for hyperspectral image classification[J].IEEE Transactions on Geoscience and Remote Sensing,2005,(06):1351-1362.doi:10.1109/TGRS.2005.846154.
  • 9Celik T. Unsupervised change detection in satellite images using principal component analysis and k-means clustering[J].IEEE Transactions on Geoscience and Remote Sensing,2009,(04):772-776.
  • 10Chen J,Gong P,He C Y,Pu R L and Shi P J. Land-use/landcover change detection using improved change-vector analysis[J].Photogram Metric Engineering and Remote Sensing,2003,(04):369-379.

共引文献84

同被引文献75

引证文献7

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部