期刊文献+

地球观测1号高光谱与全色图像融合的最佳方法 被引量:4

Best fusion method of hyperspectral and panchromatic imagery based on Earth Observing-1 satellite
在线阅读 下载PDF
导出
摘要 受制于成像原理及制造技术等因素,航天高光谱遥感图像的空间分辨率相对较低,为此提出将高光谱图像与高空间分辨率图像进行融合处理,设计最佳的增强高光谱遥感图像空间分辨率的融合算法。针对地球观测1号(EO-1)Hyperion高光谱图像和高级陆地成像仪(ALI)全色波段图像的特点,从9种具体遥感图像融合算法中选用4种融合算法开展山区与城市的数据融合实验,即Gram-Schmidt光谱锐化融合法、平滑调节滤波(SFIM)变换融合法、加权平均法(WAM)融合法和小波变换(WT)融合法,并分别从定性、定量和分类精度三方面对这些方法的融合效果进行综合评价与对比分析,从而确定适合EO-1高光谱与全色图像融合的最佳方法。实验结果显示:从图像融合效果看,在所采用的4种融合方法中,Gram-Schmidt光谱锐化融合法的效果最好;从图像分类效果看,基于融合图像的分类效果要优于基于源图像的分类效果。理论分析与实验结果均表明:Gram-Schmidt光谱锐化融合法是一种较为理想的高光谱与高空间分辨率遥感图像的融合算法,为提高高光谱遥感图像的清晰度、可靠性及图像的地物识别和分类的准确性提供有力的支持。 Subject to the imaging principle, manufacturing technology and other factors, the spatial resolution of spaceborne hyperspectral remote sensing imagery is relatively low. Therefore, the thesis proposed the image fusion of hyperspectral imagery and high spatial resolution imagery, and designed the best fusion algorithm to enhance spatial resolution of hyperspectral remote sensing imagery. According to the characteristics of Earth Observing-1 (EO-1) Hyperion hyperspectral imagery and Advanced Land Imager (ALI) panchromatic imagery, 4 kinds of fusion algorithms were selected to carry out a comparative study of the image fusion effect for the city and mountain regions from 9 kinds of remote sensing image fusion algorithms, namely Gram-Schmidt spectral sharpening fusion method, transform fusion method of Smoothing Filter-based Intensity Modulation (SFIM), Weighted Average Method (WAM) fusion method and Wavelet Transformation (WT) fusion method. And it carried out the comprehensive evaluation and analysis of the image fusion effect from 3 aspects of qualitative, quantitative and classification precision, which aims to determine the best fusion method for EO-1 hyperspectral imagery and panchromatic imagery. The experimental results show that: 1) from the image fusion effect, Gram-Schmidt spectral sharpening fusion method is the best in 4 kinds of fusion methods used; 2) from the image classification effect, the classification results based on the fusion image is better than the classification results based on the source image. The theoretical analysis and experimental results show that Gram-Schmidt spectral sharpening fusion method is an ideal fusion algorithm for hyperspectral imagery and high spatial resolution imagery, and it can provide powerful support to improve the clarity of hyperspectral remote sensing imagery, the reliability and the accuracy of the image object recognition and classification.
出处 《计算机应用》 CSCD 北大核心 2014年第8期2365-2370,共6页 journal of Computer Applications
基金 国家社会科学基金资助项目(03BTJ004) 福建省自然科学基金资助项目(2011J01265)
关键词 高光谱图像 数据融合 综合评价 地球观测1号 hyperspectral imagery data fusion comprehensive evaluation Earth Observing-1 (EO-1)
  • 相关文献

参考文献15

  • 1EHLERS M.Multisensor image fusion techniques in remote sensing [J].ISPRS Journal of Photogrammetry and Remote Sensing,1991,46(1):19-30.
  • 2SIMONE G,FARINA A,MORABITO F C,et al.Image fusion techniques for remote sensing applications [J].Information Fusion,2002,3(1):3-15.
  • 3CLAYTON D G.Gram-Schmidt orthogonalization [J].Applied Statistics,1971,20(3):335-338.
  • 4LABEN C A,BROWER B V.Process for enhancing the spatial resolution of multispectral imagery using Pan-sharpening:USA,6011875 [P].2000-01-04.
  • 5李存军,刘良云,王纪华,王人潮.两种高保真遥感影像融合方法比较[J].中国图象图形学报(A辑),2004,9(11):1376-1385. 被引量:97
  • 6LIU J G.Smoothing filter-based intensity modulation:a spectral preserve image fusion technique for improving spatial details [J].International Journal of Remote Sensing,2000,21(18):3461-3472.
  • 7徐涵秋.基于SFIM算法的融合影像分类研究[J].武汉大学学报(信息科学版),2004,29(10):920-923. 被引量:18
  • 8满旺,袁莹,黄于同,张杰林.一种基于曲波变换的遥感图像融合新算法[J].长江大学学报(自科版)(上旬),2010,7(2):70-73. 被引量:4
  • 9U.S.Geological Survey.Earth Observing 1(EO-1) [EB/OL].[2011-11-13].http://eo1.usgs.gov.
  • 10吴培中.从地球观测-1卫星看21世纪卫星新技术[J].国际太空,2001(8):10-16. 被引量:3

二级参考文献68

共引文献204

同被引文献33

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部