期刊文献+

基于偏序对改进蝙蝠算法的旅行商问题研究 被引量:5

An Improved Unordered Pair Bat Algorithm for Traveling Salesman Problem
在线阅读 下载PDF
导出
摘要 作为一种新兴的群智能启发式算法,蝙蝠算法近年来被广泛用于求解离散、连续、及组合优化问题。针对典型组合优化问题中的旅行商问题,提出了一种基于偏序对改进的蝙蝠算法用于求解离散型旅行商问题。通过对蝙蝠速度、位置的更新,使算法具有更强的适用性。对16个标准旅行商问题(traveling salesman problem,TSP)进行测试与对比分析以验证算法有效性。实验结果表明:所提出的偏序对蝙蝠算法在大多数实例中均优于其他算法。 As a novel heuristic algorithm for swarm intelligence,the bat algorithm has been widely used in recent years to solve discrete,continuous,and combinatorial optimization problems.The traveling salesman problem(TSP)is one of typical combinatorial optimization problems.Therefore,an improved bat algorithm based on partial order pair was proposed for solving discrete traveling salesman problems.By updating the bat speed and position,stronger applicability was achieved by the proposed algorithm.16 standard TSP problems were applied to verify the feasibility and effectiveness of the proposed algorithm.The experimental results verify that the proposed partial order improved bat algorithm is superior to other algorithms in most examples.
作者 李婷 张楠 吕志民 邹蕾 LI Ting;ZHANG Nan;LU Zhi-min;ZOU Lei(Beijing Jinghang Research Institute of Computing and Communication,Beijing 100074,China;Collaborative Innovation Center of Steel Technology,University of Science and Technology Beijing,Beijing 100083,China)
出处 《科学技术与工程》 北大核心 2020年第33期13735-13739,共5页 Science Technology and Engineering
基金 国家自然科学基金(51274043)。
关键词 离散蝙蝠算法 旅行商问题 偏序对 组合优化问题 discrete bat algorithm traveling salesman problem partial order pair combinatorial optimization problem
  • 相关文献

参考文献4

二级参考文献19

  • 1邵晓巍,邵长胜,赵长安.利用信息量留存的蚁群遗传算法[J].控制与决策,2004,19(10):1187-1189. 被引量:11
  • 2王俊伟,汪定伟.粒子群算法中惯性权重的实验与分析[J].系统工程学报,2005,20(2):194-198. 被引量:87
  • 3孟伟,韩学东,洪炳镕.蜜蜂进化型遗传算法[J].电子学报,2006,34(7):1294-1300. 被引量:78
  • 4Dorigo M, Maniezzo V, Colomy A, The ant system: optimization by a colony of cooperating Agent& IEEE Transactions on systems, Man, And Cybemetics-PartB, 1996 ;26 ( 1 ) :29-41.
  • 5Dorigo M, Gambardella L M. Ant colony system: a cooperative learning approach to the traveling salesman problem IEEE Tronsocrions on Evolutioionog Compulolion,1997 ; 1 ( 1 ) : 53-66.
  • 6Pilat M L, White T. Using genetic algorithms to optimize ACSTSP. Brussels, Belgium: Proceedings of 3rd International Workshop on ant Algorithms/ANTS2002 ,LNCS,2002 ;282--287.
  • 7王晓陵,陆军.最优化方法和最优控制.哈尔滨:哈尔滨工程大学出版社,2006.
  • 8Chen C Y,Li T H S,Yeh Y C. EP-based kinematic control and adap-tive fuzzy sliding-mode dynamic control for wheeled mobile robots. In-formation Sciences, 2009 ; 197 : 180—195.
  • 9Jie Jing, Ji Huanhuan, Wang Meng, et al. Improved discrete particleswarm optimization based on edge coding and multilevel reductionstrategy for larger scale TSP. 2010 Sixth International Conference onNatural Computation, Yantai, Shandong ,2010 :2633—2637.
  • 10刘立东,蔡淮.融入遗传算法的混合蚁群算法[J].计算机工程与设计,2008,29(5):1248-1249. 被引量:24

共引文献189

同被引文献53

引证文献5

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部