摘要
针对传统发射药制备工艺无法实现复杂结构成型的问题,利用基于光固化成型3D打印技术制备了黑索今(RDX)+光敏树脂体系发射药,利用旋转黏度计、红外成像仪、万能材料试验机研究了3D打印发射药的物料黏度、光聚合固化反应放热、力学特性等性能。结果表明,通过添加稀释剂可以将光敏树脂黏度由42Pa·s降至1.5Pa·s,且在很小的剪切速率下就能够降到极小值;光聚合固化过程为放热反应,固化过程最高温度51.1℃,满足RDX等含能材料的安全要求;3D打印发射药的拉伸强度、压缩强度和弯曲强度分别为6.46、36.1和10.2MPa,常温力学强度与常规火药相当。试验结果论证了光聚合固化3D打印技术的可行性。
Due to the limitation of traditional manufacturing technologies for manuscript complex gun propellants,3D vat photopolymerization technology was used to print gun propellant composed of hexogen(RDX)and photosensitive resin binder.Rotational viscometer,infrared thermal imager and universal material testing machine were used to test the viscosity,light curing exothermic reaction,mechanical properties of printed propellant.The rotational viscometer test results show that the 3D light curing polymerization printing technology is feasible.The photosensitive resin viscosity can be reduced from 42 to 1.5Pa·s by adding the diluent.Meanwhile,the viscosity can be reduced to a minimum at a very small shear rate.Infrared thermal imager results show that the curing process of photopolymerization is exothermic,and the highest curing temperature is 51.1℃,which satisfied the safety requirements of energy materials such as RDX.The mechanical properties results show that the tensile strength,compressive strength and bending strength of the 3D printed propellant are 6.46,36.1 and 10.2MPa,respectively.The mechanical strength at room temperature is comparable to that of conventional gun propellant.The results indicate that the 3D printing method based on vat photopolymerization is feasible.
作者
胡睿
杨伟涛
姜再兴
于宪峰
王琼林
HU Rui;YANG Wei-tao;JIANG Zai-xing;YU Xian-feng;WANG Qiong-lin(Xi′an Modern Chemistry Research Institute,Xi′an 710065,China;College of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001, China;Unit 63961 of PLA,Beijing 100012,China)
出处
《火炸药学报》
EI
CAS
CSCD
北大核心
2020年第4期368-371,382,共5页
Chinese Journal of Explosives & Propellants
基金
国防科工局火炸药专项。
关键词
应用化学
发射药
3D打印
增材制造
快速成型
光聚合固化
applied chemistry
gun propellant
3D printing
additive manufacturing
rapid prototyping
vat photopolymerization