期刊文献+

基于多级特征并联的轻量级图像语义分割 被引量:4

Lightweight image semantic segmentation based on multi-level feature cascaded network
在线阅读 下载PDF
导出
摘要 针对当前语义分割算法普遍具有网络结构复杂和计算开销巨大的问题,为了综合提高语义分割算法实时性和精确度,提出计算高效的基于多级特征并联网络(LSSN)的轻量级图像语义分割网络.该算法综合考虑网络的参数量、运行速度和性能,能更好地应用到嵌入式设备和可移动设备上.应用微调的深度卷积神经分类网络作为特征提取网络结构,提取网络不同深浅层语义和位置特征.提出空洞残差增强模块和深度空洞空间金字塔模块分别处理来自特征提取基准网络的深层特征和浅层特征,并将深浅层特征按特定维度比例以并联的方式进行融合.所提方法在PASCAL VOC 2012数据集上准确度(平均交并比)为77.13%,与当前具有高性能的语义分割算法和实时语义分割算法相比,能更好地平衡网络的实时性和精确度,具有更优的实用价值和性能效果. Semantic segmentation algorithms usually have complex network structure and huge computation.A lightweight image semantic segmentation algorithm based on multi-level feature cascaded network was proposed to improve the infer speed and accuracy of semantic segmentation.The number of parameters,running speed and performance of the proposed network were considered comprehensively,which can be better applied to embedded devices and mobile devices.The fine-turned deep convolutional neural classification network was used for feature extraction,which can extract both the semantic and location characteristics of different depth layers in the network.An atrous residual feature refine module and a deep atrous spatial pyramid pooling module were used to fuse the deep and shallow features,respectively.And then,the features from deep and shallow layers were fused in parallel with a specific proportion.The mean intersection over union of the proposed approach on the PASCAL VOC 2012 dataset was 77.13%.The proposed method has a better balance between the real-time performance and segmentation accuracy,and has good performance and practical value compared with the current state of the art semantic segmentation and real-time semantic segmentation algorithms.
作者 周登文 田金月 马路遥 孙秀秀 ZHOU Deng-wen;TIAN Jin-yue;MA Lu-yao;SUN Xiu-xiu(School of Control and Computer Engineering,North China Electric Power University,Beijing 102206,China)
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2020年第8期1516-1524,共9页 Journal of Zhejiang University:Engineering Science
基金 中央高校基本科研业务费专项资金资助项目(2018ZD06)。
关键词 深度学习 全卷积神经网络 语义分割 特征融合 空洞卷积 deep learning full convolutional neural network semantic segmentation feature fusion atrous convolution
  • 相关文献

同被引文献30

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部