期刊文献+

一种基于劳动密集度的剩余劳动力资源聚类方法

A Clustering Method of Surplus Labor Resources Based on Labor Intensity
在线阅读 下载PDF
导出
摘要 基于劳动力市场系列指标,设计劳动力密度估计、数据块耦合、数据聚簇中心提取和分布式归集等过程,对新疆华凌贸易市场进行劳动力资源的密度聚类和链路预测。结果表明:(1)劳动力资源的高效链路改良率与劳动力资源冗余度呈正向促进关系。(2)劳动力链路数量较多,不能直接等同于现行劳动力资源冗余度高,但“链路改良率”数量多,意味着劳动力资源冗余大。(3)新型高效的劳动力仿真链路意味着产生新型劳动力市场的潜力。(4)通过仿真增加劳动力节点,可以检测劳动力资源的可改良链路情况和劳动力迁入趋势。因此,该劳动力密度聚类方法在链路预测的结论准确性、精准匹配度、效能仿真和环境适应性等方面能够扩大数字化集成的优势。 This paper designs labor density estimation,data block coupling,data cluster center extraction and distributed clustering based on labor market indicators,and performs density clustering and link detection of labor resources on Xinjiang Hualing Trade Market.The results indicate that:(1)There is a positive relationship between the efficient link improvement rate of labor resources and the redundancy of labor resources;(2)Although a large number of labor links cannot directly be equated with high redundancy of current labor resources,but the large number of“link improvement rates”in the labor links means necessarily that the labor resources are redundant;(3)New and efficient labor simulation links means generating the potential of the labor market;(4)Adding labor nodes through simulation can detect improved link conditions of labor resources and labor migration trend.Therefore,the labor density clustering method expands the advantages of digital integration in terms of link detection such as conclusion accuracy,precise matching,performance simulation,and environmental adaptability.
作者 孙彬 王欣 徐春 SUN Bin;WANG Xin;XU Chun(School of Information Management, Xinjiang University of Finance & Economy, Urumchi 830012, China)
出处 《地域研究与开发》 CSSCI CSCD 北大核心 2020年第3期53-58,共6页 Areal Research and Development
基金 新疆高校科学研究重点项目(XJEDU2016S100,XJEDU2016I064,XJEDU2017M025) 新疆哲学社会科学研究项目(17BXW091,18BGL086) 教育部人文社会科学研究规划资助项目(16XJJAZH003)。
关键词 剩余劳动力 劳动力密度 分布式聚类 聚簇中心 链路预测 surplus labor labor density distributed clustering cluster center link prediction
  • 相关文献

参考文献23

二级参考文献192

共引文献232

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部