期刊文献+

基于药物和疾病特征关联的药物重定位混合推荐算法 被引量:3

Hybrid recommendation algorithm for drug repositioning based on association of drug and disease characteristics
在线阅读 下载PDF
导出
摘要 针对基于协同过滤的药物重定位算法进行了研究,考虑到数据稀疏性对协同过滤算法的巨大影响,提出一种基于药物和疾病特征关联的药物重定位混合推荐算法。该算法不仅使用了药物和疾病关系数据,还利用了药物结构、靶蛋白、副作用以及药物—疾病特征矩阵等信息计算药物之间的相似性,降低了数据稀疏性对推荐效果的影响,提高了推荐精度。经过对比实验发现,该算法具备较好的推荐效果,并能够发掘具有潜在联系的药物—疾病组合,进一步验证了该算法可以有效地应用于药物重定位。 This paper studied the algorithm of drug repositioning based on collaborative filtering.Considering the great influence of data sparsity on collaborative filtering algorithm,it proposed a hybrid recommendation algorithm based on the association of drug and disease characteristics.The algorithm not only used the data of drug and disease,but also used the information of drug structure,target protein,side effect and drug-disease feature matrix to calculate the similarity between drugs,which reduced the influence of data sparsity to the recommendation effect and improved the precision of recommendation.The results of contrastive experiment show that the algorithm has a good recommendation effect,and can explore the drug-disease combinations which have potential relationship,and further verified that the algorithm can be effectively applied to drug repositioning.
作者 刘杰 金柳颀 景波 Liu Jie;Jin Liuqi;Jing Bo(Institute of Industry&Equipment Technology,Hefei University of Technology,Hefei 230000,China;National“111 Plan”Gerontechnology Innovate Base,Hefei University of Technology,Hefei 230000,China)
出处 《计算机应用研究》 CSCD 北大核心 2020年第3期672-675,共4页 Application Research of Computers
基金 安徽省2017年度重点研究与开发计划项目(1704e1002221) 国家高等学校学科创新引智“111”计划资助项目(B14025)。
关键词 药物重定位 数据稀疏性 疾病特征 混合推荐 相似度 drug repositioning data sparsity disease characteristics hybrid recommendation similarity
  • 相关文献

参考文献3

二级参考文献25

  • 1余力,刘鲁.电子商务个性化推荐研究[J].计算机集成制造系统,2004,10(10):1306-1313. 被引量:104
  • 2彭玉,程小平.基于属性相似性的Item-based协同过滤算法[J].计算机工程与应用,2007,43(14):144-147. 被引量:21
  • 3[1]Marrie TJ. Community-acquired pneumonia: Epidemioiogy, etio-logy, treatment. Infect Dis Clin North Am, 1998,12∶723-740.
  • 4[2]Crook DWM, Spratt BG. Multiple antibiotic resistance in streptococcus pneumoniae. Brit Med Bull, 1998, 54∶595-610.
  • 5[3]Mainous AG-3rd, Evans ME, Hueston WJ, et al. Patterns of antibiotic resistant streptococcus pneumoniae in children in a day-care setting. J Fam Pract, 1998, 46∶119-120.
  • 6[4]American Academy of Pediatrics Committee on Infections Diseases. Therapy for children with invasive pneumococcal infections. Pediatrics, 1997, 99∶289-299.
  • 7LAWRENCE B D, ALMASI G S, KOTLYAR V, et al. Personalization of supermarket product recommendations[ R]. IBM, 2000.
  • 8BREESE J S, HECKERMAN D, KADIE C. Empirical analysis of predictive algorithms for collaborative filtering[ EB/OL]. [ 2011 - 03 -01 ]. http://www, cs. washington, edu/education/courses/csep.546/07 sp/pmj2/algsweb, pdf.
  • 9SARWAR B, KARYPIS G, KONSTAN J, et al. hem-based collabo- rative filtering recommendation algorithms[ C] //Proceedings of the 10th International World Wide Web Conference. New York: ACM Press, 2001 : 285 - 295.
  • 10LINDEN G, SMITH B, YORK J. Amazon. com recommendations: Item-to-Item collaborative filtering [ J]. IEEE Intemet Computing, 2003,7(1) :76 -80.

共引文献22

同被引文献20

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部