期刊文献+

基于谱聚类与多因子融合的协同过滤推荐算法 被引量:2

Collaborative filtering recommendation algorithm based on spectral clustering and fusion of multiple factors
在线阅读 下载PDF
导出
摘要 针对传统协同过滤算法面临数据稀疏、忽略用户时间上下文信息及对兴趣物品偏好程度等问题,提出基于谱聚类与多因子融合的协同过滤推荐算法。首先将FCM聚类融入到谱聚类算法的关键步骤,并通过聚类有效性指数对用户聚类个数进行优化,以降低生成最近邻的时耗;然后将Salton因子、时间衰减因子、用户偏好因子进行融合,从而对相似度进行改进;最后获取系统当前时间为目标用户生成推荐列表。Movie Lens上的实验结果表明,该算法在推荐精度、覆盖率及新颖度指标上有较大改善,提升了推荐性能。 Due to the problems of traditional collaborative filtering recommendation algorithm, included the data sparsity, ignored the users' time context information and preference for interest items, this paper proposed a collaborative filtering recommendation algorithm based on spectral clustering and multiple factors. Firstly, it integrated FCM into the key step of the spectral clustering, and determined the cluster number via cluster validity index, which could reduce the cost to generate a set of the nea- rest neighbors. Then, it improved the similarity measure by combing the Salton factor, time decay factor and user pre-ference factor. Finally, it generated the recommendation list for the objective user combining the system' s current time. The experimental results on MovieLens show that the proposed algorithm improves recommendation quality in accuracy, cove-rage and novelty.
出处 《计算机应用研究》 CSCD 北大核心 2017年第10期2905-2908,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(11201290)
关键词 协同过滤 谱聚类 Salton因子 时间衰减因子 用户偏好因子 collaborative filtering spectral clustering Salton factor time decay factor user preference factor
  • 相关文献

参考文献8

二级参考文献122

共引文献207

同被引文献23

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部