期刊文献+

一种基于图优化的室内定位指纹数据库建立方法 被引量:10

Method for radio fingerprint databased establishment using graph optimization
在线阅读 下载PDF
导出
摘要 信号指纹数据库(radio fingerprint database, RFDB)是基于WLAN的室内定位最重要的条件支撑。提出一种RFDB的测绘方法,该方法不依赖于额外的硬件或室内地图信息,通过图优化的方法融合手机的惯性数据、信号指纹数据,从而获得最大似然的室内位置估计,并根据位置的估计结果获得室内的RFDB,可用于WLAN室内定位。通过实验对比,证明了所提出的方法相比于地图点按方法定位误差下降了1.0 m,相比于基于高斯过程插值的方法在参考点稀疏的环境下定位误差下降了0.8 m。 Radio fingerprint databased(RFDB) is the prerequisite for WLAN based indoor positioning of the utmost importance. In this paper, a RFDB surveying method is proposed without dependence on additional information such as external hardware or indoor maps. In the method, the inertial data and the fingerprinting data are fused through graph optimization(GO). Then the indoor positions along with the RFDB can be estimated with greatest consistency of all types of information. The acquired RFDB can then be adopted for WLAN based indoor positioning. Experiments are carried out to evaluate the proposed method. It is proved that compared with pin point method, the proposed method has a mean positioning error decrease of about 1.0 m and compared with the Gaussian process based method with sparse reference points, the number is 0.8 m.
作者 李竞 卢建洲 Li Jing;Lu Jianzhou(Henan Agricultural Vocational College,Zhengzhou 451450,China;ZhengZhou University of Light Industry,Zhengzhou 450002,China)
出处 《电子测量与仪器学报》 CSCD 北大核心 2020年第2期29-35,共7页 Journal of Electronic Measurement and Instrumentation
基金 国家自然基金重点项目(51534002) “十三五”国家重点研发计划(2017YFC0804103)资助项目。
关键词 WLAN定位 信号指纹数据库 图优化 WLAN based indoor positioning radio fingerprint database graph optimization
  • 相关文献

参考文献3

二级参考文献13

  • 1孙冬梅,裘正定.生物特征识别技术综述[J].电子学报,2001,29(z1):1744-1748. 被引量:143
  • 2Moghtadaiee V and Dempster A. WiFi fingerprinting signalstrength error modeling for short distances[C]. Proceedings ofthe International Conference on Indoor Positioning andIndoor Navigation (IPIN), Sydney, Australia, 2012: 13-15.
  • 3Yu Y, Yang J, McKelvey T, et al. A compact UWB indoorand through-wall radar with precise ranging and tracking[J],International Journal of Antennas and Propagation, 2012,25(6): 38-46.
  • 4Foxlin E. Pedestrian tracking with shoe-mounted inertialsensors [J]. Computer Graphics and Applications, 2005,30(5):20-26.
  • 5Nilsson J, Skog I, and Handel P. A note on the limitations ofZUPTs and the implications on sensor error modeling[C].Proceedings of the International Conference on IndoorPositioning and Indoor Navigation (IPIN), Sydney, Australia,2012: 20-22.
  • 6Borenstein J and Ojeda L. Heuristic drift elimination forpersonnel tracking systems[J]. Journal of Navigation, 2010,63(4): 591-606.
  • 7Angermann M and Robertson P. Footslam: Pedestriansimultaneous localization and mapping without exteroceptivesensors --hitchhiking on human perception and cognition[J].Proceedings of the IEEE, 2012, 100(Special Centennial Issue):1840-1848.
  • 8Hoi J D, Schon T B, and Gustafsson F. On resamplingalgorithms for particle filters[C]. Proceedings of theNonlinear Statistical Signal Processing Workshop,Cambridge, England, 2006: 79-82.
  • 9Gu Y, Ma M, Li Y, et al" Accurate height estimation basedon apriori knowledge of buildings [C]. Proceedings of theInternational Conference on Indoor Positioning and IndoorNavigation (IPIN), Montbeliard, France, 2013: 28-31.
  • 10张翠平,苏光大.人脸识别技术综述[J].中国图象图形学报(A辑),2000,5(11):885-894. 被引量:260

共引文献18

同被引文献80

引证文献10

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部