期刊文献+

一种井下人员无线定位算法研究 被引量:6

Research on a wireless positioning algorithm for underground personnel
在线阅读 下载PDF
导出
摘要 针对传统井下指纹定位算法存在需要采集大量指纹数据和定位精度不高的问题,提出了一种差分鱼群优化最小二乘支持向量机(DEAFSA-LSSVM)的井下人员无线定位算法.首先将井下实验区域划分为多个小区域,并利用克里金插值算法建立指纹数据库;然后利用差分进化与人工鱼群混合智能算法优化正则化参数和核函数宽度,建立最小二乘支持向量机算法模型,利用无线采集接收终端采集待定位点的无线信息数据,通过最小二乘支持向量机算法模型计算出其所属小区域;最后利用小区域内无线信息数据,通过加权K近邻算法进行实时定位.实验结果表明:该定位算法的收敛速度快,分类准确,准确率达到98.87%;定位精度高,平均定位误差为1.51 m,比未经优化的最小二乘支持向量机算法的定位精度提高18.82%. For problems that traditional underground fingerprint positioning algorithm needs to collect a large number of fingerprint data and positioning accuracy is not high, a wireless positioning algorithm for underground personnel based on differential evolution and artificial fish swarm algorithm optimization least square support vector machine( DEAFSA-LSSVM) was proposed. Firstly, the underground experimental area is divided into several small areas, and the fingerprint database is established by Kriging interpolation algorithm. Secondly, the hybrid intelligent algorithm of differential evolution and artificial fish swarm is used to optimize regularization parameters and width of kernel function, and the least squares support vector machine algorithm model is established. The wireless acquisition and reception terminal is used to collect wireless information data of undetermined site, and its small area is calculated by the least squares support vector machine algorithm model. Finally, the wireless information data in the small area is used for real-time positioning by weighted K-nearest neighbor algorithm. The experimental results show that the algorithm has high convergence speed and high classification accuracy, the classification accuracy is 98.87%;and has high positioning accuracy, the average positioning error is 1.51 m, which is 18.82%higher than that of the least squares support vector machine algorithm without optimization.
作者 刘夏 李国良 张灵峰 汪郁 孙虎 黄启能 丁琼 LIU Xia;LI Guoliang;ZHANG Lingfeng;WANG Yu;SUN Hu;HUANG Qineng;DING Qiong(School of Electronics and Information Engineering,Guizhou Industry Polytechnic College,Guiyang 551400,China;College of Big Data and Information Engineering,Guizhou University,Guiyang 550025,China)
出处 《工矿自动化》 北大核心 2020年第4期38-45,共8页 Journal Of Mine Automation
基金 贵州省科技厅资助项目(黔科合LH字〔2016〕7069) 贵州省教育厅课题(2019B211) 贵州工业职业技术学院校级科研项目(2019ZK03)。
关键词 井下无线定位 指纹定位 实验小区域划分 最小二乘支持向量机 差分进化算法 人工鱼群算法 underground wireless positioning fingerprint positioning division of experimental small area least square support vector machine differential evolution algorithms artificial fish swarm algorithms
  • 相关文献

参考文献19

二级参考文献182

  • 1Chen, Wei, Fu, Yinfei.Cooperative distributed target tracking algorithm in mobile wireless sensor networks[J].控制理论与应用(英文版),2011,9(2):155-164. 被引量:9
  • 2王福豹,史龙,任丰原.无线传感器网络中的自身定位系统和算法[J].软件学报,2005,16(5):857-868. 被引量:673
  • 3江冰,吴元忠,谢冬梅.无线传感器网络节点自定位算法的研究[J].传感技术学报,2007,20(6):1381-1385. 被引量:21
  • 4戴汝为 周登勇.智能控制与适应性.第三届全球智能控制与自动化大会(WCICA'2000)[M].合肥:-,2000.11-17.
  • 5SAVVIDES A, PARK H, SRIVASTAVA M. The bits and flops of the n-hop multilateration primitive for node localization problems[A]. Proceedings of ACM WSNA '02[C]. Atlanta, Georgia, USA, 2002.
  • 6SHANG Y, RUML W, ZHANG Y, et al. Localization from mere connectivity[A]. Proc of the 4th ACM International Symposium on Mobile Ad Hoc Networking and Computing[C]. Annapolis, USA, 2003.
  • 7BISWAS P, LIANG T C, TOH K C, et al. Semidefinite programming approaches for sensor network localization with noisy distance measurements[J]. IEEE Trans Autom Sci Eng, 2006, 3(4):360-370.
  • 8WU Z L, LI C H, JOSEPH K Y N, et al. Location Estimation via Support Vector Regression[J]. IEEE Transactions on Mobile Computing, 2007, 6(3):311-321.
  • 9NGUYEN X, JORDAN M, SINOPOLI B. A kernel-based learning approach to ad hoc sensor network localization[J]. ACM Transactions on Sensor Networks, 2005, 1(1):134-152.
  • 10ZHU C E KUH A. Dynamic ad hoc network localization using online least squares kernel subspace methods[A]. IEEE International Symposium on Information Theory[C]. Washington, USA, 2006.

共引文献1621

同被引文献80

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部