期刊文献+

多空间分辨率自适应特征融合的相关滤波目标跟踪算法 被引量:11

Object Tracking with Multi-spatial Resolutions and Adaptive Feature Fusion Based on Correlation Filters
在线阅读 下载PDF
导出
摘要 相关滤波算法因无法充分利用深度特征和浅层特征的互补特性而限制跟踪性能.针对该问题,文中提出多空间分辨率自适应特征融合的相关滤波目标跟踪算法.首先,使用更深的ResNet-50网络提取深度特征,提高特征表示在跟踪过程中的鲁棒性和鉴别性.再针对不同特征具有不同空间分辨率的特点,从视频帧中分割不同尺度的图像块作为搜索区域,更好地平衡边界效应和样本数目.最后,引入自适应特征融合方法,以自适应的权重融合两类特征的响应图,充分利用其互补特性.在多个标准数据集上的实验证实文中算法的有效性和鲁棒性. Correlation filter(CF)based trackers cannot take advantage of the complementary characteristic of deep features and shallow features.To mitigate this problem,an object tracking algorithm with multi-spatial resolutions and adaptive feature fusion based on correlation filter is proposed.Firstly,ResNet-50 is employed to extract deep features and enhance the discrimination and robustness of feature representation during tracking.Additionally,according to the characteristic of different features with different spatial resolutions,image patches in different scales are segmented from video frame as the search area to balance the boundary effect and the number of samples.Finally,an adaptive feature fusion strategy is introduced to fuse the response maps corresponding to two kinds of features with adaptive weights to utilize the complementary characteristic.The experiments on multiple standard datasets verify the effectiveness and robustness of the proposed algorithm.
作者 汤张泳 吴小俊 朱学峰 TANG Zhangyong;WU Xiaojun;ZHU Xuefeng(School of Internet of Things Engineering,Jiangnan University,Wuxi 214122;Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence,Jiangnan University,Wuxi 214122)
出处 《模式识别与人工智能》 EI CSCD 北大核心 2020年第1期66-74,共9页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61672265,U1836218) 中国教育部111项目(No.B12018)资助~~
关键词 视觉目标跟踪 相关滤波 特征表示 自适应融合 Visual Object Tracking Correlation Filter Feature Representation Adaptive Fusion
  • 相关文献

参考文献5

二级参考文献16

  • 1西广成.基于平均场理论逼近的神经网络[J].电子学报,1995,23(8):62-64. 被引量:6
  • 2Yilmaz A,Javed O,Shah M. Object Tracking:A Survey[J].{H}ACM COMPUTING SURVEYS,2006.
  • 3Marron M,Garcia J C,Sotelo M A. Tracking Multiple Objects Using a Kalman Filter and a Probabilistic Association Process[A].Vigo,Spain,2007.2135-2138.
  • 4Reid D B. An Algorithm for Tracking Multiple Targets[J].{H}IEEE Transactions on Automatic Control,1979,(06):843-854.
  • 5Pietzsch S,Vu T D,Burlet J. Results of a Precrash Application Based on Laser Scanner and Short-Range Radars[J].IEEE Trans on Intelligent Transportation Systems,2009,(04):584-593.
  • 6Salari V,Sethi I K. Feature Point Correspondence in the Presence of Occlusion[J].{H}IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,(01):87-91.
  • 7Sethi I K,Jain R. Finding Trajectories of Feature Points in a Monocular Image Sequence[J].{H}IEEE Transactions on Pattern Analysis and Machine Intelligence,1987,(01):56-73.
  • 8Veenman C J,Reinders M J T,Backep E. Resolving Motion Correspondence for Densely Moving Points[J].{H}IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,(01):54-72.
  • 9Andrey C,Andrey L. Tracking Feature Points:Dynamic Programming Algorithm[A].Trondheim,Norway,2009.1032-1037.
  • 10王永忠,梁彦,赵春晖,潘泉.基于多特征自适应融合的核跟踪方法[J].自动化学报,2008,34(4):393-399. 被引量:56

共引文献256

同被引文献113

引证文献11

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部