期刊文献+

基于动态时间规整和主动外观模型的动态表情识别 被引量:5

Dynamic Expression Recognition Based on Dynamic Time Warping and Active Appearance Model
在线阅读 下载PDF
导出
摘要 针对静态表情特征缺乏时间信息,不能充分体现表情的细微变化,该文提出一种针对非特定人的动态表情识别方法:基于动态时间规整(Dynamic Time Warping,DTW)和主动外观模型(Active Appearance Model,AAM)的动态表情识别。首先采用基于局部梯度DT-CWT(Dual-Tree Complex Wavelet Transform)主方向模式(Dominant Direction Pattern,DDP)特征的DTW对表情序列进行规整。然后采用AAM定位出表情图像的66个特征点并进行跟踪,利用中性脸的特征点构建人脸几何模型,通过人脸几何模型的匹配克服不同人呈现表情的差异,并通过计算表情序列中相邻两帧图像对应特征点的位移获得表情的变化特征。最后采用最近邻分类器进行分类识别。在CK+库和实验室自建库HFUT-FE(He Fei University of Technology-Face Emotion)上的实验结果表明,所提算法具有较高的准确性。 To overcome the deficiency of static expression feature, which lacks time information and can not reflect the subtle changes of expression adequately, a dynamic expression recognition method is proposed for non-specific face: the dynamic expression recognition based on Dynamic Time Warping (DTW) and Active Appearance Model (AAM). Firstly, the method of DTW based on local gradient Dual Tree-Complex Wavelet Transform (DT-CWT) dominant direction pattern is used to warp expression sequence. Secondly, using AAM to locate 66 feature points of face image and track them. The changing feature of expression can be obtained by calculating the displacement of corresponding feature points in two adjacent expression sequences image. And using the feature points of neutral face to build the facial geometry model. The matching of facial geometry model can overcome the expression differences between various people. Finally, the nearest neighbor classifier is used for classification and recognition. The experimental results on CK+ database and HeFei University of Technology-Face Emotion (HFUT-FE) database show that the proposed algorithm has a high degree of accuracy.
出处 《电子与信息学报》 EI CSCD 北大核心 2018年第2期338-345,共8页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61300119 61432004) 安徽省自然科学基金(1408085MKL16)~~
关键词 动态表情识别 动态时间规整 主动外观模型 双树复小波变换 主方向模式 Dynamic expression recognition Dynamic Time Warping (DTW) Active Appearance Model (AAM) Dual Tree-Complex Wavelet Transform (DT-CWT) Dominant direction pattern
  • 相关文献

参考文献5

二级参考文献56

  • 1练秋生,尚燕,陈书贞,王林.基于DT-CWT和SVM的纹理分类算法[J].光电工程,2007,34(4):109-113. 被引量:10
  • 2刘晓旻,章毓晋.基于Gabor直方图特征和MVBoost的人脸表情识别[J].计算机研究与发展,2007,44(7):1089-1096. 被引量:26
  • 3Abdat F. Maaoui C. Pruski A. Human-computer interaction using emotion recognition from facial expression[CJ I I Proceedings of the 5th UKSim European Symposium on Digital Object Identifier. Aire-Ia - Ville: Eurographics Association Press. 2011: 196-201.
  • 4Soyel H. Demirel H. Localized discriminative scale invariant feature transform based facial expression recognition[J]. Computers s, Electrical Engineering. 2012. 38 (5): 1299- 1309.
  • 5YiJ. Idrissi K. Automatic facial expression recognition based on spatiotemporal descriptors[J]. Pattern Recognition Letters. 2012. 33(10): 1373-1380.
  • 6Zhan Y Z. YeJ F. Niu DJ. et al . Facial expression recognition based on Gabor wavelet transformation and elastic templates matching[CJ IIProceedings of the 3rd International Conference on Image and Graphics. Los Alamitos: IEEE Computer Society Press. 2004: 254-257.
  • 7Zhang Z. Zhao Z. Yuan T T. Expression recognition based on multi -scale block local Gabor binary patterns with dichotomy-dependent weights[MJ IILecture Notes in Computer Science. Heidelberg: Springer. 2009. 5552: 895- 903.
  • 8Liu S S. Tian Y T. Facial expression recognition method based on Gabor wavelet features and fractional power polynomial kernel PCA[MJ II Lecture Notes in Computer Science. Heidelberg: Springer. 2010. 6064: 144-151.
  • 9Sun X H. Xu H X. Zhao C X. et al . Facial expression recognition based on histogram sequence of local Gabor binary patterns[CJ IIProceedings of IEEE Conference on Cybernetics and Intelligent Systems. Los Alamitos: IEEE Computer Society Press. 2008: 384-389.
  • 10Liu H B. Zhang G B. Huang Y M. et al . Multiple features extraction and coordination using Gabor wavelet transformation and fisherfaces with application to facial expression recogni tion[CJ //Proceedings of Chinese Conference on Pattern Recognition. Los Alamitos: IEEE Computer Society Press. 2010: 1-5.

共引文献67

同被引文献51

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部