期刊文献+

大范围动态图像序列帧间运动检测方法研究 被引量:4

Method for Large Range Dynamic Image Sequences
在线阅读 下载PDF
导出
摘要 在复杂多变的环境下,大范围动态图像序列中会存在大量噪声和干扰向量,导致传统方法较难正确检测出图像帧间运动,容易产生错误结果。针对现实环境中干扰因素的特性,给出一种大范围动态图像序列帧间运动检测方法,构建检测模型,通过分析动态图像序列中干扰向量的波动性和周期性特征,确定检测帧当前状态,分类为波动性干扰窗口、运动窗口以及背景窗口,利用阈值分割与形态学处理,将所有运动窗口合并确定运动帧,完成帧间运动检测。通过仿真证明,上述方法能够有效降低动态图像序列中干扰向量,极大提升帧间运动检测的准确性和鲁棒性。 In complex environment,large-scale dynamic image sequence has a large number of noise and interference vectors.In traditional methods,it is difficult to detect inter-frame motion correctly,leading to erroneous results.Due to the characteristics of interference factors in real environment,this paper presented a method to detect inter-frame motion in large-scale dynamic image sequence.First of all,a detection model was constructed.Then,the current state of detection frame was determined by analyzing the fluctuation and periodicity of interference vectors in dynamic image sequence,including the fluctuation interference window,motion window and background window.In addition,threshold segmentation and morphology were used to combine all motion windows,so as to determine the motion frames.Thus,the inter-frame motion detection was completed.Simulation results prove that the proposed method can effectively reduce the interference vectors in dynamic image sequences and greatly improve the accuracy and robustness of inter-frame motion detection.
作者 童钰 TONG Yu(Department of Computer Science and Technology,Hubei Normal University,Huangshi Hubei 435000,China)
出处 《计算机仿真》 北大核心 2019年第12期391-395,共5页 Computer Simulation
关键词 图像帧间 运动检测 帧间差法 形态学处理 阈值 Interframe Motion detection Interframe difference method Morphological processing Threshold
  • 相关文献

参考文献12

二级参考文献71

  • 1胡社教,葛西旺,陈宗海.基于角点特征的KLT跟踪全景图像拼接算法[J].系统仿真学报,2007,19(8):1742-1744. 被引量:17
  • 2Chris Stauffer, Eric W, Grimson L. Learning patterns of activity using real-time tracking [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22 (8) : 747-757.
  • 3Kaewtrakulpong Pakorn, Bowden Richard. An improved adaptive background mixture model for real-time tracking with shadow detection[ C ]//Proceedings of the 2nd European Workshop Based on Advanced Video-based Surveillance Systems Providence, USA: kluwer Academic Publishers, 2001 : 149-158.
  • 4Zoran Zivkovic. Recursive unsupervised learning of finite mixture models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26 (5) : 651-656.
  • 5Lee Dar-Shyang. Effective gaussian mixture learning [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5) : 827-832.
  • 6Michael Harvine, Gaile Gordon, John Woodfill. Foreground segmentation using adaptive mixture models in color and depth [ C ]//IEEE Workshop on Detection and Recognition of Events in Video. New York : Computer Science Press, 2001 : 3-11.
  • 7Thongkamwitoon T, Aramvith S, Chalidabhongse T H. An adaptive real-time background subtraction and moving shadows detection[ C ]//IEEE International Conference on Multimedia and Expo. New York: IEEE, 2004, 2: 1459-1462.
  • 8Chao Yuyan, Kenji Suzuki. A run-based two-scan labeling algorithm[J]. IEEE Intelligent Transaction on Image Processing, 2008, 17(5) : 749-756.
  • 9Han Hongzhe, Wang Zhiling. Adaptive background modeling with shadow suppression [ EB/OL ]. [ 2008-12-04 ]. http:// ieeexplore, ieee. org/stamp, jsp? arnumber =01252045.
  • 10陈磊,邹北骥.基于动态阈值对称差分和背景差法的运动对象检测算法[J].计算机应用研究,2008,25(2):488-490. 被引量:28

共引文献101

同被引文献18

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部