期刊文献+

一种结合贪心选择和特征加权的高维数据聚类算法 被引量:6

A High Dimensional Data Clustering Algorithm Combining Greedy Selection and Feature Weighting
在线阅读 下载PDF
导出
摘要 为解决传统聚类算法无法对高维数据聚类的问题,文中提出了一种结合贪心选择和特征加权的TC-Mean shift高维数据聚类算法。通过对一维数据进行聚类,获得一维数据的聚类结果,再通过加权添加维度聚类,最终获得所有维度数据的聚类,实现对高维数据的聚类。测试结果表明,该算法能够准确地对稀疏的高维数据样本进行聚类,能够处理各种维度的数据,具有良好的实际应用价值。 In order to solve the problem that traditional clustering algorithms can not cluster high-dimensional data, a high-dimensional data clustering algorithm combining greedy selection and feature weighting was proposed. By clustering one-dimensional feature data, the clustering results of one-dimensional data were obtained first, and then all dimension data were clustered by adding dimension clustering weights to achieve clustering of high-dimensional data. The results showed that the algorithm can accurately cluster sparse high-dimensional data samples and meet the needs of high-dimensional data clustering processing, and had good practical application value.
作者 向志华 邵亚丽 XIANG Zhihua;SHAO Yali(School of Information Technology,Guangdong Polytechnic College,Zhaoqing 526100,China)
出处 《电子科技》 2019年第11期70-73,共4页 Electronic Science and Technology
基金 广东省教育厅科技项目(201713720010)~~
关键词 贪心策略 特征加权 聚类 高维数据 Mean SHIFT greedy strategy feature weighting clustering high-dimensional data Mean shift
  • 相关文献

参考文献9

二级参考文献54

共引文献88

同被引文献54

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部