期刊文献+

图像高维数据的K-means自适应聚类算法 被引量:6

Adaptive K-means to High Dimensional Feature of Image
在线阅读 下载PDF
导出
摘要 在图像信息处理中视觉词典生成过程需要对高维数据进行聚类操作.但这些高维数据不可避免会对计算机内存和计算能力提出更高要求.本文针对聚类过程中可能产生的内存耗尽以及初始聚类质心设置问题,对现有K-means算法加以改进.通过建立初始聚类质心与各类场景中的特定语义的关联,使之体现图像各类场景的类别特征集合,进而用于指导K-means过程中的初始质心设置.此外,在迭代过程中通过批次读入特征描述子,采用K近邻进行簇分配,从而避免了一次性读入全部特征描述子而造成的内存耗尽问题.同时,对于新的簇质心生成采用综合判别均值与中位值的办法来提高各族的聚合度.本文方法与Oxford University提出的K-means进行了对比,实验结果表明本文算法在性能与收敛上更具优势. In order to generate a codebook for Image Information Index task,cluster has been done to deal with high dimension data. But it may give rise to problems,because it demands high memory capacity and fast operation of computers,in which computers will risk running out of memory. Since proper initial centers are very important to K-means which is used to do cluster. The paper proposes a novel way to adapt classic K-means to solve those problems by building correlation between the initial centers and special sematic contained in each image category scene. We read all image feature descriptors in groups, and distribute them into its individual group by KNN in the each iteration. After comparing mean vector and median vector, new cluster centers have been chosen in the iterations, with which can converge fast. We compare with the K-means proposed by Oxford University, our algorithm is jump on the rival to converge.
出处 《小型微型计算机系统》 CSCD 北大核心 2016年第8期1854-1856,共3页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61362024 61562035)资助
关键词 K均值聚类 视觉词典 图像高维特征描述 K近邻 K-means visual dictionary image high dimension feature descriptor K-nearest neighbor
  • 相关文献

参考文献3

二级参考文献28

  • 1刘泉凤,陆蓓,王小华.文本挖掘中聚类算法的比较研究[J].计算机时代,2005(6):7-8. 被引量:8
  • 2唐春生,张磊,潘东,等.文本分类研究进展[EB/OL].2001.ttp://epec.sjtu.edu.cn/seminar/.
  • 3边肇棋 张学工.模式识别[M].北京:清华大学出版社,2000..
  • 4Lowe D G. Object recognition from local scale-invariant features,international conference on computer vision[J]. Corfu, Greece, 1999:1150-1157.
  • 5David G. Lowe,Distinctive Image Features from Scale- invariant Keypoints [J]. International Journal of Computer Vision ,2004,60(2):91-110.
  • 6刁蒙蒙,张菁,卓力,等.一种基于视觉单词的图像检索方法[D].北京:北京工业大学,2011.
  • 7AHMET CAGRI SIMSEK Content-Based Image Retrieval using the Bag-of-Words Concept [J].IEEE,2010 : 3-4.
  • 8TerryLiang.Lucene2.1研究:倒排序基本常识[EB/OL].(2007). http://www.blogjava.net/ Liangtianyu/ archive/2007/ 06/11 / 123281.htmls.
  • 9朱烨行.文档聚类算法研究[D].西安:西北工业大学,2009.
  • 10Zhao Ying, Karypis G. Criterion functions for document clut ring: Experiments and analysis[R/OL]. 20O3-O4-23 [2008-10-2] http://glaros dt: umrL edu/gkhome/cluto/cluto/do:aload [.

共引文献16

同被引文献48

引证文献6

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部