摘要
为了深入研究湖南四大地方茶树群体资源之一的城步峒茶,从原产地收集筛选了17份有代表性的资源进行生化成分评价鉴定和遗传多样性分析。结果表明:17份资源生化成分存在丰富的多样性和变异,平均遗传多样性指数达2.34,平均变异系数达24.43%;多变量主成分分析,前4个主成分代表了17份资源生化成分多样性85.197%的信息;对17份资源15个生化成分进行聚类,可分为3大类群,第1大类群为红绿茶兼制的资源,第2大类群也是红绿茶兼制的资源,第3大类群为适制红茶的资源;并从中初步筛选出一批生化成分特异的资源,其中高茶多酚资源17份,高咖啡碱资源2份,高酯型儿茶素资源2份。
In order to further study Chengbu Dong Tea,one of the four major local tea resources in Hunan Province, 17 representative resources were collected and screened from their origin for evaluation,identification and genetic diversity analysis.The results showed that there were abundant diversity and variation in biochemical components of 17 resources,with an average genetic diversity index of 2.34 and an average coefficient of variation of 24.43%.Principal component analysis showed that the first four principal components represented 85.197%of the biochemical diversity of 17 resources.15 biochemical components of 17 resources were clustered into three groups,the first group was the resources suitable for making both black and green tea,the second group was also suitable for black and green tea,and the third group was suitable for black tea,.A batch of resources with specific biochemical components were screened out.among which,there were 17 high tea polyphenol resources,2 high caffeine resources,and 2 high ester catechin resources.
作者
宁静
刘振
杨拥军
杨阳
沈程文
张曙光
肖敦旺
马良元
NING Jing;LIU Zhen;YANG Yong-jun;YANG Yang;SHEN Cheng-wen;ZHANG Shu-guang;XIAO Dun-wang;MA Liang-yuan(Tea Research Institute,Hunan Academy of Agricultural Science,Changsha 410125,China;Department of Tea Science,School of Horticulture and Landscape,Hunan Agricultural University,Changsha 410128,China;Chengbu County Bureau of Agriculture,Chengbu 422500,China;Chengbu Tianren Dadong Tea Industry Co.,Ltd,Chengbu 422500,China)
出处
《茶叶通讯》
北大核心
2019年第3期269-275,共7页
Journal of Tea Communication
基金
中央引导地方科技发展专项资金(2019XF5041)
湖南省农业科技创新项目(2017QN09)
湖南省农业创新联盟项目(2017LM0201)
国家现代农业产业技术体系建设专项资金(CARS-19)
关键词
城步峒茶
种质资源
生化成分
遗传多样性
主成分分析
聚类分析
Chengbu Dong Tea
Germplasm resources
Biochemical components
Genetic diversity
Principal component analysis
Cluster analysis