期刊文献+

基于协方差矩阵重构的阵元失效MIMO雷达DOA估计 被引量:1

DOA Estimation in MIMO Radar with Broken Elements Based on Covariance Matrix Reconstruction
在线阅读 下载PDF
导出
摘要 在实际应用中由于恶劣环境或人为干扰等因素而导致多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达部分阵元失效,使得其接收数据缺失及其协方差矩阵秩亏,从而导致子空间类算法的波达方向(Direction of Arrival,DOA)估计性能恶化甚至完全失效。针对上述问题,提出了一种接收阵元失效下基于协方差矩阵重构的MIMO雷达DOA估计方法。该方法根据MIMO雷达协方差矩阵中以接收阵元数划分的子方块矩阵具有Toeplitz特性,利用正常工作接收阵元的协方差矩阵元素来恢复相应的缺失元素,从而重构出完整的数据协方差矩阵,提高阵元失效MIMO雷达的DOA估计性能。仿真结果验证了所提方法的有效性。 Some elements of the multiple-input multiple-output(MIMO)radar are damaged due to harsh environment or human interference in practical application.Therefore,the received data of MIMO radar is lost and the rank of covariance matrix is degenerated,which causes the performance of the subspace algorithm to be deteriorated or even completely failed.A direction-of-arrival(DOA)estimation method for MIMO radar based on covariance matrix reconstruction under receiver element defect is proposed.Firstly,some square sub-matrices are divided from the covariance matrix of MIMO radar according to the number of receiving arrays,which have the property of Toeplitz.The data elements corresponding to the missing elements in the covariance are constructed from the intact elements.Then a complete covariance matrix is obtained to improve the DOA estimation performance of MIMO radar with missing elements.Simulation results demonstrate the effectiveness of the proposed algorithm.
作者 陈金立 卓齐刚 李家强 陈宣 CHEN Jinli;ZHUO Qigang;LI Jiaqiang;CHEN Xuan(Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,Nanjing University of Information Science and Technology,Nanjing 210044,China;School of Electronic and Information Engineering,Nanjing University of Information Science and Technology,Nanjing 210044,China;School of Physics and Optoelectronic Engineering,Nanjing University of Information Science and Technology,Nanjing 210044,China)
出处 《电讯技术》 北大核心 2019年第1期70-75,共6页 Telecommunication Engineering
基金 国家自然科学基金资助项目(61302188 61372066 11304394) 江苏省自然科学基金项目(BK20131005)
关键词 MIMO雷达 DOA估计 阵元失效 协方差矩阵重构 MIMO radar DOA estimation broken elements covariance matrix reconstruction
  • 相关文献

参考文献5

二级参考文献42

  • 1贾永康,保铮,吴洹.一种阵列天线阵元位置、幅度及相位误差的有源校正方法[J].电子学报,1996,24(3):47-52. 被引量:74
  • 2李有明,王让定,文化峰.均匀直线阵幅相误差校正的扰动分析及最优化算法[J].电子与信息学报,2007,29(7):1653-1656. 被引量:12
  • 3Schmidt R. Multiple emitter location and signal parameter estimation [ J ]. IEEE Trans on A P, 1986,34 ( 3 ) :267-280.
  • 4Friedlander B. A sensitivity analysis of the MUSIC algorithm[ J]. IEEE Trans on ASSP, 1990, 38 (10) : 1740- 1751.
  • 5Swindlehurst A, Kailath T. A performance analysis of subspace-based methods in the presence of model error: Part I --The MUSIC algorithm[ J]. IEEE Trans on SP, 1992,40 (7) :1758-1774.
  • 6Weiss A J, Friedlander B. Effects of modeling errors on the resolution threshold of the MUSIC algorithm [ J ]. IEEE Trans on SP, 1994,42(6) :1519-1526.
  • 7See C M S. Sensor array calibration in the presence of mutual coupling and unknown sensor gains and phases [J] .Electronics Letters, 1994,30(5 ) :373-374.
  • 8Jaffer A G.. Constrained mutual coupling estimation for array calibration [ C ]. Proceeding of the 35th Asilomar Conference on Signal, Systems and Computers, 2001,1273- 1277.
  • 9Weiss A J, Friedlander B. Eigenstructure methods for direction finding with sensor gain and phase uncertainties [J]. Circuits Syst, Signal Processing, 1990,9 (2) : 272- 300.
  • 10Hung E K L. A critical study of a self-calibrating directionfinding method for arrays[ J]. IEEE Trans on SP, 1994,42 (2) :471-474.

共引文献14

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部