期刊文献+

基于稀疏贝叶斯的阵列幅相和互耦误差联合校正方法 被引量:2

Array amplitude-phase and mutual coupling error joint correction method based on sparse Bayesian
在线阅读 下载PDF
导出
摘要 实际阵列测向系统中往往存在幅相、互耦等多种误差,导致阵列测向性能出现严重恶化。为解决在低信噪比、小快拍、多种误差同时存在时的阵列测向失准问题,通过引入信号空域稀疏性,利用贝叶斯稀疏重构技术解决在幅相、互耦误差同时存在时的无源校正及阵列信号方位的联合估计问题,构建了误差存在时的接收信号的超完备模型,得到接收信号的后验概率密度函数。利用EM算法对概率密度函数进行迭代优化并对相应参数进行求解,同时还对阵列误差及信号方位的CRLB进行推导,实验仿真验证了所提方法的有效性。 In the actual array direction finding system, there are often a variety of errors such as amplitude and phase,mutual coupling, which lead to serious deterioration of array direction finding performance. In order to solve the problem of array direction finding misalignment in the presence of low signal-to-noise ratio, small snapshots and multiple errors,the spatial sparsity of signals were introduced, and Bayesian sparse reconstruction technology was used to solve the passive correction and joint estimation of array signal azimuth in the presence of amplitude-phase and mutual coupling errors.The over-complete model of the received signal with error was constructed, and the posterior probability density function of the received signal was obtained. The EM algorithm was used to iteratively optimize the probability density function to solve the corresponding parameters. At the same time, the CRLB of array error and signal azimuth was derived, and by experimental simulation verifies the effectiveness of the proposed method.
作者 王鼎 高卫港 吴志东 WANG Ding;GAO Weigang;WU Zhidong(Institute of Information System Engineering,Information Engineering University,Zhengzhou 450001,China)
出处 《通信学报》 EI CSCD 北大核心 2022年第9期112-120,共9页 Journal on Communications
基金 国家自然科学基金资助项目(No.62171469,No.62071029)。
关键词 幅相误差 互耦误差 稀疏重构 波达方向估计 amplitude-phase error mutual coupling error sparse reconstruction DOA estimation
  • 相关文献

参考文献9

二级参考文献56

  • 1王布宏,王永良,陈辉,郭英.方位依赖阵元幅相误差校正的辅助阵元法[J].中国科学(E辑),2004,34(8):906-918. 被引量:40
  • 2贾永康,保铮,吴洹.一种阵列天线阵元位置、幅度及相位误差的有源校正方法[J].电子学报,1996,24(3):47-52. 被引量:74
  • 3李有明,王让定,文化峰.均匀直线阵幅相误差校正的扰动分析及最优化算法[J].电子与信息学报,2007,29(7):1653-1656. 被引量:12
  • 4Schmidt R O. Multiple emitter location and signal parameter estimation[J]. IEEE Trans. on AP, 1986,34(3):276 - 280.
  • 5Friedlander B. A sensitivity analysis of the MUSIC algorithm [J]. IEEE Trans. on ASSP , 1990,38(10): 1740 - 1751.
  • 6Swindlehurst A,Kailath T. A performance analysis of subspace-based methods in the presence of model error: Part I The MUSIC algorithm[J]. IEEE Trans. on SP , 1992,40(7) :1758 - 1774.
  • 7Swindlehurst A, Kailath T. A performance analysis of subspace-based methods in the presence of model errors: part II-multidimensional algorithms [ J ]. IEEE Trans. on SP , 1993, 41 ( 9 ) 2828 - 2890.
  • 8Friedlander B,Weiss A J. Direction finding in the presence of mutual coupling[J]. IEEE Trans. on AP, 1991,39 (3) : 273 - 284.
  • 9Viberg M,Swindlehurst A L. A Bayesian approach to auto-calibration for parametric array signal processing[J]. IEEE Trans. on SP,1994,42(12) :3495 - 3507.
  • 10Jansson M, Swindlehurst A L, Ottersten B. Weighted subspace fitting for general array error models[J]. IEEE Trans. on SP, 1998,46 (9) :2484 - 2498.

共引文献37

同被引文献30

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部