期刊文献+

指挥控制智能化问题分解研究 被引量:18

On Artificial Intelligence for Problem Decomposition of Command and Control
在线阅读 下载PDF
导出
摘要 人工智能技术的发展,以及AlphaGo Zero的成功,让人们看到了指挥控制智能化的曙光.然而战场比棋盘复杂太多,照搬其方法有很大难度,基于学习的人工智能方法无法一揽子解决整个指挥控制智能化问题.从对指挥控制智能化问题的复杂度分析入手,提出分而治之的理念,并尝试将其分解为6个子问题.比较了基于知识、基于学习两种主流人工智能方法,分别对6个子问题做了适用性分析.作为一种观点,供业界争论探讨. The rapid development of artificial intelligence technology has led to the victory of AlphaGo Zero,making people see the hope of intelligent military command and control.However,battlefield is quite more complex than chess-board.Its method is di±cult to copy,as learning based methods may not solve the whole intelligent military command and control problem.Starting from problem complexity analysis,this paper attempts to decompose the problem into 6 sub-problems.Two kinds of mainstream artificial intelligence methods based on knowledge and learning are compared,and six sub-problems are analyzed respectively.The view point is proposed for debate and exploration.
作者 金欣 JIN Xin(The Information System Important Laboratory,Nanjing Jiangsu 210007,China)
出处 《指挥与控制学报》 2018年第1期64-68,共5页 Journal of Command and Control
关键词 指挥控制 人工智能 知识系统 机器学习 command and control artificial intelligence knowledge system machine learning
分类号 E91 [军事]
  • 相关文献

参考文献7

二级参考文献61

  • 1郭齐胜,董志明,穆歌.装备需求论证规范化基本理论研究[J].装甲兵工程学院学报,2013,27(1):1-4. 被引量:7
  • 2KERR B. DARPA demos Deep Green [EB/OL].( 201 1-04-07) [2016-05-10]. http://www, ftleave worthlamp, com/ article/ 2011040 7 / NEWS/ 3040 7 9884.
  • 3SURDU J R. Deep Green[EB/OL]. (2008-05-08) [2016-05-10]. http://www, darpa, mil.
  • 4SURDU J R, KITTKA K. The Deep Green concept [C]//Proceedings of Spring Simulation Multiconfer- ence 2008 Conference on Military Modelling and Simu- lation Symposium. Ottawa:Spring, 2008 : 623-631.
  • 5SURDU J R, STERRETT J, LUNSFORD J. The gaming debate[J]. Training - Simulation Journal, 2010(12) .- 46-48.
  • 6MilLer G A. The magical number seven, plus or minus two: somelimits on our capacity for processing information [J]. The Psychological Review, 1956,63 : 81-97.
  • 7YANN L C. BENGIO Y, HINTON G. Deep learning [J]. Nature,2015,521(7553) :436-444.
  • 8CLARK L. Google's artificial brain learns to find cat videos[EB/OL]. (2012-06-26)[2016-05-10]. http:// www. wired, com/2012/06/google-x-neural-network/.
  • 9SILVER D , HUANG A, MADDISON C J, et al. Mas- tering the game of go with deep neural networks and tree search[J]. Nature, 2016,529(7587) :484-489.
  • 10MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015,518(7540) :529-533.

共引文献215

同被引文献198

引证文献18

二级引证文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部