期刊文献+

基于二维互补随机共振的轴承故障诊断方法研究 被引量:12

Bearings fault diagnosis based on two-dimensional complementary stochastic resonance
在线阅读 下载PDF
导出
摘要 一维随机共振(One-Dimensional Stochastic Resonance,1DSR)被广泛用于轴承故障诊断中。针对传统1DSR对微弱信号的检测效果不够理想,输出信号噪声大,不能准确获得轴承故障特征频率(Fault Characteristic Frequency,FCF)等问题,提出一种新的二维互补随机共振(Two-Dimensional Complementary Stochastic Resonance,2DCSR)方法并应用于轴承故障诊断。将采集到的轴承故障信号根据共振带位置进行带通滤波并解调,随后将解调信号对半分成两个子信号并输入2DCSR的两个输入端,利用输出信号的加权功率谱峭度(WPSK)指标对2DCSR系统参数进行自适应调节优化,得到最优的滤波输出信号及频谱,以识别轴承FCF并诊断轴承故障类型。数值仿真及实验结果表明,提出的方法可以有效地增强轴承FCF并提高轴承故障诊断效果。 One-dimensional stochastic resonance(1DSR)methods have been widely used in bearing fault diagnosis.However,some deficiencies still exist in the traditional 1DSR methods such as limited weak signal detection capacity,obvious output noise,and inaccurate bearing fault characteristic frequency(FCF)for fault recognition,etc.To address these issues,this study proposed a new two-dimensional complementary stochastic resonance(2DCSR)method to enhance bearing fault diagnosis.First,the acquired bearing fault signal was bandpass-filtered according to the location of resonance band and then demodulated.Then the demodulated signal was split into two sub-signals and the sub-signals were sent to the two input channels of the 2DCSR.The weighted power spectral kurtosis(WPSK)of the output signal was used as the criterion to guide parameters tuning in the 2DCSR system adaptively.Finally the optimal output signal and its spectrum were obtained for bearing fault recognition.Numerical and experimental results show that the bearing FCF can be enhanced by the proposed 2DCSR method,thereby improving the performance of bearing fault diagnosis.
作者 陆思良 苏云升 赵吉文 何清波 刘方 刘永斌 LU Siliang;SU Yunsheng;ZHAO Jiwen;HE Qingbo;LIU Fang;LIU Yongbin(College of Electrical Engineering and Automation,Anhui University,Hefei 230601,China;Department of Precision Machinery and Precision Instrumentation,University of Science and Technology of China,Hefei 230026,China)
出处 《振动与冲击》 EI CSCD 北大核心 2018年第4期7-12,27,共7页 Journal of Vibration and Shock
基金 国家自然科学基金(51605002 51577001)
关键词 轴承故障诊断 二维互补随机共振 加权功率谱峭度 微弱信号检测 bearing fault diagnosis two-dimensional complementary stochastic resonance weighted power spectral kurtosis weak signal detection
  • 相关文献

参考文献5

二级参考文献71

  • 1于德介,程军圣,杨宇.机械故障诊断的Hilbert-Huang变换方法[M].北京:科学出版社,2007.
  • 2Benzi R, Sutera A, Vulpinai A. The mechanism of stochastic resonance [ J ]. Journal of Physics A: Mathematical and General, 1981, 14(1I):453-457.
  • 3Mitaim S, Kosko B. Adaptive stochastic resonance [ J ]. Proceedings of the IEEE, 1998, 86 (11) : 2152 - 2183.
  • 4LI Jian-long, XU Bo-hou. Effects of signal spectrum varying on signal processing by parameter-induced stochastic resonance [ J ]. Physica A : Statistical Mechanics and its Applications, 2006, 361 ( 1 ) : 11 - 23.
  • 5LI Qiang, WANG Tai-yong, LENG Yong-gang, et al. Engineering signal processing based on adaptive step-changed stochastic resonance [ J]. Mechanical Systems and Signal Processing, 2007, 21(5): 2267-2279.
  • 6Teodorovic D. Swarm intelligence systems for transportation engineering : principles and applications [ J ]. Transportation Research Part C, 2008, 16(6) : 651 -667.
  • 7Bernardino E M, Bernarno A M, Sanehes-Perez J M, et al. Swarm optimisation algorithms applied to large balanced communication networks J ]. Journal of Network and Computer Applications, 2013, 36( 1 ) : 504 -522.
  • 8SHEN Wei, GUO Xiao-peng, WU Chao, et al. Forecasting stock indices using radial function neural networks optimized by artificial fish swarm algorithm [ J ]. Knowledge-Based Systems, 2011, 24(3): 378-385.
  • 9李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式:鱼群算法[J].系统工程理论实践,2002,22(11):32-38.
  • 10Huang N E,Shen Z,Long S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,Proc.Roy.Soc.London,1998,454:903-995.

共引文献275

同被引文献117

引证文献12

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部