期刊文献+

基于小波域平稳子空间分析的风力发电机齿轮箱故障诊断 被引量:30

Wind Turbine Gearbox Fault Diagnosis Based on Wavelet Domain Stationary Subspace Analysis
在线阅读 下载PDF
导出
摘要 风力发电机齿轮箱故障信号为非平稳瞬态微弱信号,容易被齿轮啮合信号及其他噪声淹没。提出一种融合连续小波变换(Continuous wavdot transform,CWT)和平稳子空间分析(Startionary subspace analysis,SSA)的信号分解方法并应用于风力发电机齿轮箱故障诊断中。平稳子空间分析作为一种盲源分离技术可将高维数据分解成平稳源部分和非平稳源部分,对待分析信号各分量间的独立性没有要求且不需要任何先验信息。连续小波变换则可利用其所具有的多尺度分析特性把一维时间序列转换为不同尺度下的多维时间序列。对观测得到的一维时间序列数据进行连续小波变换得到多维时间序列作为平稳子空间分析的输入,利用平稳子空间分析方法将该多维时间序列分解为平稳源信号分量和非平稳源信号分量,对非平稳源信号进行包络谱分析得到齿轮箱故障的特征频率。该小波域平稳子空间分析方法被应用于一个实际风力发电机齿轮箱振动信号的分析,试验结果表明该方法可有效地诊断出齿轮箱中的轴承故障。 Fault-related signals of wind turbine gearbox are non-stationary,transient and weak,which are often mixed together with gear meshing signals and submerged in background noise.A new wind turbine gearbox fault diagnosis method based on continuous wavelet transform(CWT) and stationary subspace analysis(SSA) is presented.The SSA is a blind source separation technique that can extract stationary and non-stationary source components from multi-dimensional signals without the need for independency and prior information of the source signals.Multi-scale analysis ability inherent in CWT allows for decomposing one dimensional signal into multi-dimensional signals,which can be naturally used as inputs to SSA to obtain the stationary parts and non-stationary parts of the original signal.Subsequently,the selected non-stationary component is analyzed by the envelope spectrum to identify potential fault-related characteristic frequency.Experimental studies from a real wind turbine gearbox test have verified the effectiveness of the presented method.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2014年第11期9-16,共8页 Journal of Mechanical Engineering
基金 国家自然科学基金资助项目(51175080)
关键词 风力发电机齿轮箱 故障诊断 连续小波变换 平稳子空间分析 wind turbine gearbox fault diagnosis continuous wavelet transform stationary subspace analysis
  • 相关文献

参考文献15

  • 1BUTTERFIELD S, SHENG S, OYAGUE F. Windenergy's new role in supplying the world's energy: What role will structural health monitoring play[C]//The 7th International Workshop on Structural Health Monitoring, September9-11, 2009, Stanford, California: 1-8.
  • 2KOTZALAS M N , DOLL G L. Tribological advancements for reliable wind turbine performance[J]. Philosophical Transactions. Series A Mathematical, Physical, and Engineering Sciences, 2010, 368: 4829-4850.
  • 3陈雪峰,李继猛,程航,李兵,何正嘉.风力发电机状态监测和故障诊断技术的研究与进展[J].机械工程学报,2011,47(9):45-52. 被引量:198
  • 4CLANG C C, LEE J R, BANG H J. Structural health monitoring for a wind turbine system: A review of damage detection methods[J]. Measurement Science and Technology, 2008, 19: 1-20.
  • 5TANG Baoping, LIU Wenyi, SONG Tao. Wind turbine fault diagnosis based on Morlet wavelet transformation and Wigner-Ville distribution[J]. Renewable Energy, 2010, 35: 2862-2866.
  • 6ANTONI J, RANDALL R B. Unsupervised noise cancellation for vibration signals: Part i- evaluation of adaptive algorithms[J]. Mechanical Systems and Signal Processing, 2004, 18: 89-101.
  • 7FADDEN P D. A revised model for the extraction of periodic wavetbrms by time domain averaging[J]. Mechanical Systems and Signal Processing, 1987, 1(1): 83-95.
  • 8HE Qingbo, FENG Zhihua, KONG Fanrang. Detection of signal transients using independent component analysis and its application in gearbox condition monitoring[J]. Mechanical Systems and Signal Processing, 2007, 21: 2056-2071.
  • 9VON BONAU P, MEINECKE F C, KIRALY F, et al. Finding stationary sub-spaces in multivariate time series[J]. Physical Review Letters, 2009, 103(21): 214101.
  • 10BLYTHE D A J, VON BONAU P, MEINECKE F C, et al. Feature extraction for change-point detection using stationary subspace analysis[J]. 1EEE Transactions on Neural Network and Learning System, 2012, 23(4): 631-643.

二级参考文献30

  • 1郭太英,黎发贵.从国外风电发展探讨我国风电发展思路[J].水电勘测设计,2006(2):20-24. 被引量:10
  • 2唐新安,谢志明,王哲,吴金强.风力机齿轮箱故障诊断[J].噪声与振动控制,2007,27(1):120-124. 被引量:47
  • 3贺娇.风能资源详查将推动产业发展[N].中国能源报,2010-02-01(15).
  • 4中国风能协会.2009年中国风电装机容量统计[R].北京:CWEA,2010.
  • 5国际新能源网.财政支持新能源的政策体系趋于完善和多样化[EB/OL].(2009-7-14)[2010-04-1].http:www.in-en.com/newenergy/html/newenergy-141514-1564403796.html.
  • 6李俊峰,高虎,王仲颖,等.2008年中国风电发展报告[R].北京:中国环境科学出版社,2008.
  • 7Caithness Windfarms Information Forum.Summary of wind turbine accident data to 31st March 2010[EB/OL].(2010-03-31)[2010-04-15].http://www.caithnesswindfarms.co.uk/page4.htm.
  • 8RIBRANT J.Reliability performance and maintenance-a survey of failures in wind power systems[D].Sweden:Royal Institute of Technology,2006.
  • 9西班牙EHN公司风电项目开发、运行、维护的经验[EB/OL].(2010-03-31)[2010-04-15].htto://www.windpowerchina.en/node/428.
  • 10HAMEED Z,HONG Y S,CHOY M,et al.Condition monitoring and fault detection of wind turbines and related,algorithms:A review[J].Renewable and Sustainable Energy Reviews,2009(13):1-39.

共引文献197

同被引文献295

引证文献30

二级引证文献323

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部