期刊文献+

基于转速扰动的表贴式永磁同步电机参数辨识 被引量:2

Parameter Identification of Surface Mount Permanent Magnet Synchronous Motor Based on Rotational Speed Disturbance
在线阅读 下载PDF
导出
摘要 为解决表贴式永磁同步电机参数在线辨识时参数辨识耦合造成的辨识误差,从电机数学模型角度分析了参数辨识时的耦合关系,并通过仿真验证了表贴式永磁同步电机参数辨识时的定子电阻和转子磁链的耦合关系,同时提出了一种基于转速扰动的递推最小二乘法永磁同步电机在线解耦参数辨识方法。该方法通过加入转速扰动结合递推最小二乘辨识方法实现了交直轴电感、定子电阻、转子磁链的在线解耦辨识。实验和仿真验证了转速扰动的注入可以有效实现解耦辨识。 In order to solve the identification error caused by parameter identification coupling in the on?line identification of surface?mount permanent magnet synchronous motor,the coupling relation of parameter identification from the view of motor mathematical model was analyzed.The coupling relation between the stator resistance and the rotor flux linkage of the surface?mount permanent magnet synchronous motor was verified by simulation.A method of on?line decoupling parameter identification based on recursive least square method for speed?perturbation was also proposed.In this method,on?line decoupling identification of q?axis and d?axis inductance,stator resistance and rotor flux linkage were realized by adding rotational speed perturbation method and recursive least square identification method.Experiments and simulations show that the injection of rotational perturbation can effectively realize decoupling identification.
作者 邓鹏 DENG Peng(College of Electronic and Information Engineering,Jingchu University of Technology,Jingmen 448000,Hubei,China)
出处 《电气传动》 北大核心 2017年第8期10-14,共5页 Electric Drive
基金 荆楚理工学院校级科研基金(QN201604)
关键词 表贴式 解耦辨识 递推最小二乘 转速扰动 surfacemounttype decoupledidentification recursiveleastsquare speeddisturbance
  • 相关文献

参考文献2

二级参考文献26

  • 1Ichikawa S, Tomita M, Doki S, et al. Sensorless control of permanent-magnet synchronous motors using online parameter identification based on system identification theory[J]. IEEE Transaction on Industrial Electronics, 2006, 53(2): 363-372.
  • 2Ramakrishnan R, Islam R, Islam M, et al. Real time estimation of parameters for controlling and monitoring[C]//IEEE International Electric Machines and Drives Conference. Miami: IEEE, 2009:1194 -1199.
  • 3MorimotoS, SanadaM, YakedaY. Mechanical sensorless drives of IPMSM with online parameter identification[J]. IEEE Transaction on Industrial Application, 2006, 42(5): 1241-1248.
  • 4Widrow B, Lehr M A. 30 years of adaptive neural networks: percentron, MAdaline, and backpropagation[J]. Proceedings of the IEEE, 1990, 78(9): 1415-1442.
  • 5Choi J W, Sul S K. Inverter output voltage synthesis using novel dead-time compensation[J]. IEEE Transaction on Power Electronics, 1996, 11(2): 221-227.
  • 6Senjyu T, Kinjo K, Urasaki N, et al. Parameter measurement for PMSM using adaptive identification[J]. IEEE Transactions on Industrial Electronics, 2002, 3(3): 711-716.
  • 7Rashed M, Macconnell P F A, Stronach A F, et al. Sensorless indirect-rotor-field-orientation speed control of a permanent-magnet synchronous motor with stator-resistance estimation[J]. IEEE Transaction on Industrial Application, 2007, 54(3): 1664-1675.
  • 8Liu L, Cartes D A. Synchronisation based adaptive parameter identification for permanent magnet synchronous motors[J]. IET Control Theory&Application, 2007, 1(4): 1015-1022.
  • 9Kim K H, Chung S K, Moon G W, et al. Parameter estimation and control for permanent magnet synchronous motor drive using model reference adaptive technique[J]. IEEE Industrial Electronics, Control, and Instrumentation, 1995, 1(6-10): 387-392.
  • 10Zhang J, Liu K, Zhu Z Q, et al. A stator reference frame based MRAS strategy for PMSM parameters identification[C]//Proceedings of the 15th International Conference on Automation & Computing, Luton, UK, 2009: 127-130.

共引文献87

同被引文献11

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部