期刊文献+

加速度差分有限状态机计步算法 被引量:17

Step Counting Algorithm Based on Finite State Machine Using Acceleration Differential
在线阅读 下载PDF
导出
摘要 在用户行为无法预知的实际计步应用中,如何保持计步算法的准确性和稳定性是一个极具挑战的问题。传统的计步算法利用阈值设定和峰值检测,并不能解决计步算法的普适性和稳定性。针对上述问题,提出了基于加速度差分作为特征的有限状态机(acceleration differential based on finite state machine,AD-FSM)计步算法。该算法将原始加速度取平方和,并通过卡尔曼滤波去除噪声干扰,最后使用加速度差分有限状态机实现计步检测。实验结果表明,该算法在正常和干扰情况下能够提供精确的计步结果,误差分别为1.12%、4.00%,验证了该计步算法在降低状态机复杂度的同时具有较强的稳定性和鲁棒性,更能适应复杂的应用场景。 In the application of step counting, how to keep the stability and accuracy of step counting algorithm is achallenging problem. The traditional approach using fixed thresholds and peak detection can not solve the problem ofstability and adaptability. In response to these problems, this paper proposes a step counting algorithm based on finitestate machine using acceleration differential as a feature (AD-FSM). Firstly, AD-FSM uses the sum of squared accelerationto orientation-independent and applies Kalman filtering to eliminate noise. Then, AD-FSM counts steps by finitestate machine. The experimental results show that the proposed algorithm can provide accurate counting results in thenormal and interference situations, the errors are only 1.12% and 4.00%. This highlights the ability of the proposedalgorithm to provide stability, robustness, and efficient counting in complex scenarios with fewer complications.
作者 王革超 梁久祯 陈璟 朱向军 WANG Gechao ;LIANG Jiuzhen;CHEN Jing;ZHU Xiangjun(School of Internet of Things Engineering, Jiangnan University,Wuxi, Jiangsu 214122, China)
出处 《计算机科学与探索》 CSCD 北大核心 2016年第8期1133-1142,共10页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金Nos.61170121 71503103~~
关键词 室内定位 计步 抗干扰 有限状态机 加速度差分 indoor location step counting anti-interference finite state machine acceleration differential
  • 相关文献

参考文献2

二级参考文献9

  • 1Moghtadaiee V and Dempster A. WiFi fingerprinting signalstrength error modeling for short distances[C]. Proceedings ofthe International Conference on Indoor Positioning andIndoor Navigation (IPIN), Sydney, Australia, 2012: 13-15.
  • 2Yu Y, Yang J, McKelvey T, et al. A compact UWB indoorand through-wall radar with precise ranging and tracking[J],International Journal of Antennas and Propagation, 2012,25(6): 38-46.
  • 3Foxlin E. Pedestrian tracking with shoe-mounted inertialsensors [J]. Computer Graphics and Applications, 2005,30(5):20-26.
  • 4Nilsson J, Skog I, and Handel P. A note on the limitations ofZUPTs and the implications on sensor error modeling[C].Proceedings of the International Conference on IndoorPositioning and Indoor Navigation (IPIN), Sydney, Australia,2012: 20-22.
  • 5Borenstein J and Ojeda L. Heuristic drift elimination forpersonnel tracking systems[J]. Journal of Navigation, 2010,63(4): 591-606.
  • 6Angermann M and Robertson P. Footslam: Pedestriansimultaneous localization and mapping without exteroceptivesensors --hitchhiking on human perception and cognition[J].Proceedings of the IEEE, 2012, 100(Special Centennial Issue):1840-1848.
  • 7Hoi J D, Schon T B, and Gustafsson F. On resamplingalgorithms for particle filters[C]. Proceedings of theNonlinear Statistical Signal Processing Workshop,Cambridge, England, 2006: 79-82.
  • 8Gu Y, Ma M, Li Y, et al" Accurate height estimation basedon apriori knowledge of buildings [C]. Proceedings of theInternational Conference on Indoor Positioning and IndoorNavigation (IPIN), Montbeliard, France, 2013: 28-31.
  • 9孙佩刚,赵海,韩光洁,张希元,朱剑.混沌三角形定位参考点选择算法[J].计算机研究与发展,2007,44(12):1987-1995. 被引量:12

共引文献68

同被引文献115

引证文献17

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部