摘要
为综合分析特高压直流输电用干式平波电抗器的损耗与温升,获得其热点位置与热点温升,文中推导了平波电抗器各个包封中直流电流损耗与谐波电流损耗分布的计算方法。针对一台±800 kV/4 000 A特高压干式平波电抗器,分析了加载等效直流电流的温升试验工况下电抗器的损耗分布与实际运行中包含谐波损耗的损耗分布的差异。对温升试验工况下特高压干式平波电抗器的温度场进行了计算,获得其温升分布,通过相应的温升试验,验证了仿真计算结果的可靠性;最后,比较了运行工况与温升试验工况下特高压干式平波电抗器的温升分布的差异。结果表明:简单地应用等效直流温升试验来研究平波电抗器热点温升的方法是不合理的;应该大力研究混频电流的加载,提高温升试验的精确度。
To analyze the loss and temperature rise of the dry-type smoothing reactor in UHVDC transmission system and obtain the hot-point location and hot-point temperature rise, we develop a calculation method of DC current loss and harmonic current loss distributions in each winding package of the smoothing reactor. Taking a ±800 kV/4 000 A UHV dry-type smoothing reactor for example, we analyze the difference of the loss distributions between the temperature rise test condition under equivalent DC current and the operation condition containing harmonic current loss. We obtain the temperature rise distribution through temperature field calculation in the condition of temperature rise test, and verify the reliability of the simulation calculation results through corresponding temperature rise test. More- over, we compare the difference of the temperature rise distributions between the practical operation condition and the temperature rise test condition, and the results show that the research of the hot-point temperature rise of a smoothing reactor only by the temperature rise test under equivalent DC current is not reasonable. It is necessary to focus on the study of loading frequency-mixing current to improve the accuracy of the temperature rise test.
作者
肖彩霞
李琳
纪锋
高冲
XIAO Caixia;LI Lin;JI Feng;GAO Chong(School of Electrical & Electronic Engineering,North China Electric Power University,Beijing 102206,China;Global Energy Interconneetion Research Institute,Beijing 102209,China;State Key Laboratory of Advanced Power Transmission Technology,Beijing 102209,China)
出处
《高压电器》
CAS
CSCD
北大核心
2018年第9期177-182,190,共7页
High Voltage Apparatus
关键词
特高压直流输电
平波电抗器
损耗分布
温升试验
热点温升
UHVDC transmission
dry-type smoothing reactor
loss distribution
temperature rise test
hot-point temperature rise