期刊文献+

非线性系统的改进型迭代学习控制算法研究 被引量:3

Improved Iterative Learning Control Algorithm for Nonlinear Systems
在线阅读 下载PDF
导出
摘要 针对普通闭环PD型迭代学习控制算法收敛速度慢且收敛精度不高的问题,通过在闭环PD型控制算法中引入动态扩张-收缩因子(dynamic expansion compression coefficient,DECC)的方法,提高闭环PD型算法的收敛速度以及收敛精度。同时将鲁棒控制引入至算法中,进一步提高算法抑制外界干扰的能力。通过构造李雅普诺夫函数证明了在所提改进的控制律作用下的信号是有界且收敛的。最后将改进的迭代学习控制算法应用在一类具有重复运行性质的非线性系统中,证明所提算法是有效的。 It aimed at the problem of slow convergence and low precision of the general closed loop PD type iterative learning control algorithm. By introducing the dynamic expansion compression coefficient(DECC)in the closed loop PD control algorithm,the convergence speed and convergence accuracy of the closed loop PD algorithm are improved. At the same time,the robust control is introduced into the algorithm,which can further improve the ability of the algorithm to restrain the external disturbance. it based on Lyapunov function proved that the proposed signal control law is improved under bounded and convergent. Finally,the improved iterative learning control algorithm is applied to a class of nonlinear systems with repetitive operations,and it is proved that the proposed algorithm is effective.
作者 郝晓弘 周勃 HAO Xiao-hong;ZHOU Bo(College of Computer and Communication, Lanzhou University of Technology, Gansu Lanzhou 730050, China;College of Electrical and Information Engineering, Lanzhou University of Technology, Gansu Lanzhou 730050, China)
出处 《机械设计与制造》 北大核心 2018年第6期29-32,共4页 Machinery Design & Manufacture
基金 国家自然基金项目(61263008 61540033)
关键词 非线性系统 迭代学习控制 PD型学习率 动态扩张-收缩因子 Nonlinear System I terative Learning Control PD-Type Learning Algorithm Dynamic Expansion Compression Coefficient
  • 相关文献

参考文献3

二级参考文献41

  • 1任雪梅,高为炳.任意初始状态下的学习控制[J].自动化学报,1994,20(1):74-79. 被引量:31
  • 2吴东南,程勉,高为炳.多步控制修正下的学习控制[J].自动化学报,1989,15(5):445-450. 被引量:7
  • 3Arimoto S, Kawamura S and Miyazaki F. Bettering operation of robots by learning. Journal of Robotic Systems, 1984, 1(2): 123-140.
  • 4Kailath T. Linear Systems. N J: Prentice Hall, 1980.
  • 5Haimo V. Finite time controllers. SIAM Journal of Control and Optimization, 1986, 24(4): 760- 770.
  • 6Zak M. Terminal attractors for addressable memory in neural networks. Physics Letters A, 1988, 133(1,2): 18-22.
  • 7Heinzinger G, Fenwick D, Paden B and Miyazaki F. Robust learning control. Proceedings of the 28th IEEE Conference on Decision and Control, USA, 1988.
  • 8Porter B, Mohamed S S. Iterative learning control of partially irregular multivariable plants with initial impulsive action. International Journal of Systems Science, 1991, 22(3): 447-454.
  • 9Lee H S and Bien Z. Study on robustness of iterative learning control with non-zero initial error. International Journal of Control, 1996, 64(3): 345-359.
  • 10Sun M, Wang D. Iterative learning control with initial rectifying action. Automatica, 2002, 38(7): 1177-1182.

共引文献33

同被引文献21

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部